We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Relative to other species, human females invest considerable effort in attracting and retaining mates. Stroll the aisles of any bookstore and you may come across titles such as “Get the guy: Learn secrets of the male mind to find the man you want and the love you deserve” (Hussey, 2014), and “Texts so good he can't ignore: Sassy texting secrets for attracting high-quality men” (Bryans, 2018). A desire to attract and retain mates underlies diverse facets of women’s psychology and behavior, including displaying or enhancing aspects of one’s personality and physical appearance. Not surprisingly, these efforts correspond with men’s mate preferences. Human males are unique in their relative choosiness surrounding their mates, especially within the context of long-term pair-bonding. Look further in that bookstore aisle and you might come across a title such as “The man's handbook for choosing the right woman” (Daniels, 2009). In this chapter, we examine the theoretical rationale underlying female intersexual selection. We begin with a discussion of the theory underlying human mate choice, highlighting why men’s choosiness has been selected for, and why this compels women to exert effort toward attracting men. We then discuss specific characteristics of men’s short-term and long-term mate choice, and the multitude of tactics women utilize to better embody those traits. We describe preliminary evidence surrounding how intersexual selection may have shaped some phenotypic traits in women as costly signals of underlying fertility or immunocompetence. Finally, we discuss both individual and contextual differences among women in their mating effort and provide suggestions for future research directions aimed at further understanding how intersexual selection has shaped women’s mating psychology.
Despite a tendency to form socially monogamous pair-bonds that carry expectations of sexual exclusivity, infidelity has been a recurrent feature of human mating across societies. The attitudes, social cognition, affect, and behavior associated with infidelity vary in patterned ways between women and men. In the current chapter, we use an evolutionary perspective to make sense of the historical and cross-cultural ubiquity of extradyadic behavior, as well the adaptative costs and benefits of men’s infidelity. Specifically, we review theory and research pertaining to men’s extra-pair mating and consider salient individual differences, romantic relationship dynamics, and social–ecological factors that influence mating strategies and extradyadic involvement. Following other scholars, we argue that men have evolved adaptations for short-term mating that facilitate opportunistic extra-pair behavior in a “quantity-over-quality” reproductive strategy. Consequently, on average, men are predicted to express a stronger desire to engage in sexual infidelity and to have more permissive attitudes toward extradyadic involvement than women. However, only particular men appear to execute a mixed mating strategy involving a long-term mate and an extra-pair partner, such as those with greater mate value. Satisfaction with and commitment to the relationship appear to be crucial in preventing men’s infidelity, and socio-ecological factors, including cultural dynamics (e.g., norms surrounding infidelity) and sex ratios that create conditions of mate scarcity, are inextricably tied to men’s extra-pair mating.
Polls asking respondents about their beliefs in conspiracy theories have become increasingly commonplace. However, researchers have expressed concern about the willingness of respondents to divulge beliefs in conspiracy theories due to the stigmatization of those ideas. We use an experimental design similar to a list experiment to decipher the effect of social desirability bias on survey responses to eight conspiratorial statements. Our study includes 8290 respondents across seven countries, allowing for the examination of social desirability bias across various political and cultural contexts. While the proportion of individuals expressing belief in each statement varies across countries, we observe identical treatment effects: respondents systematically underreport conspiracy beliefs. These findings suggest that conspiracy beliefs may be more prominent than current estimates suggest.
Musculoskeletal models, like all theoretical models of physical processes, depend on the assumptions needed to construct the model. For musculoskeletal models, these assumptions include, among other things, the kinematic data, the kinetic data and the muscle parameters. The former (dynamic) data can be acquired relatively easily from living subjects, but the latter are usually based on limited information, frequently determined from cadaver studies performed on elderly individuals. Previously, we determined the sensitivity of forces to dynamic differences among 10 humans walking on a straight path. Here, we assess the sensitivity of the muscle and joint reaction forces developed in human walking to variable muscle parameters obtained from 10 living adults, whose data were recently reported, and compared the results with the values from a standard model that depends on cadaveric data. We found that, while the force patterns across the stance cycle were similar among muscle parameter models, differences of as much as 15% in the force magnitude were produced. Whether or not the variation between the standard model and other muscle parameters is important depends on why the forces are required.
Monoclonal antibody therapeutics to treat coronavirus disease (COVID-19) have been authorized by the US Food and Drug Administration under Emergency Use Authorization (EUA). Many barriers exist when deploying a novel therapeutic during an ongoing pandemic, and it is critical to assess the needs of incorporating monoclonal antibody infusions into pandemic response activities. We examined the monoclonal antibody infusion site process during the COVID-19 pandemic and conducted a descriptive analysis using data from 3 sites at medical centers in the United States supported by the National Disaster Medical System. Monoclonal antibody implementation success factors included engagement with local medical providers, therapy batch preparation, placing the infusion center in proximity to emergency services, and creating procedures resilient to EUA changes. Infusion process challenges included confirming patient severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positivity, strained staff, scheduling, and pharmacy coordination. Infusion sites are effective when integrated into pre-existing pandemic response ecosystems and can be implemented with limited staff and physical resources.
Seed retention, and ultimately seed shatter, are extremely important for the efficacy of harvest weed seed control (HWSC) and are likely influenced by various agroecological and environmental factors. Field studies investigated seed-shattering phenology of 22 weed species across three soybean [Glycine max (L.) Merr.]-producing regions in the United States. We further evaluated the potential drivers of seed shatter in terms of weather conditions, growing degree days, and plant biomass. Based on the results, weather conditions had no consistent impact on weed seed shatter. However, there was a positive correlation between individual weed plant biomass and delayed weed seed–shattering rates during harvest. This work demonstrates that HWSC can potentially reduce weed seedbank inputs of plants that have escaped early-season management practices and retained seed through harvest. However, smaller individuals of plants within the same population that shatter seed before harvest pose a risk of escaping early-season management and HWSC.
We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding of Earth's sensitivity to carbon dioxide, finds that permafrost thaw could release more carbon emissions than expected and that the uptake of carbon in tropical ecosystems is weakening. Adverse impacts on human society include increasing water shortages and impacts on mental health. Options for solutions emerge from rethinking economic models, rights-based litigation, strengthened governance systems and a new social contract. The disruption caused by COVID-19 could be seized as an opportunity for positive change, directing economic stimulus towards sustainable investments.
Technical summary
A synthesis is made of ten fields within climate science where there have been significant advances since mid-2019, through an expert elicitation process with broad disciplinary scope. Findings include: (1) a better understanding of equilibrium climate sensitivity; (2) abrupt thaw as an accelerator of carbon release from permafrost; (3) changes to global and regional land carbon sinks; (4) impacts of climate change on water crises, including equity perspectives; (5) adverse effects on mental health from climate change; (6) immediate effects on climate of the COVID-19 pandemic and requirements for recovery packages to deliver on the Paris Agreement; (7) suggested long-term changes to governance and a social contract to address climate change, learning from the current pandemic, (8) updated positive cost–benefit ratio and new perspectives on the potential for green growth in the short- and long-term perspective; (9) urban electrification as a strategy to move towards low-carbon energy systems and (10) rights-based litigation as an increasingly important method to address climate change, with recent clarifications on the legal standing and representation of future generations.
Social media summary
Stronger permafrost thaw, COVID-19 effects and growing mental health impacts among highlights of latest climate science.
Most earthen burial mounds of eastern North America have been destroyed—or have they? We review geophysical methods for assessing whether leveled mounds retain intact deposits or features. Magnetic survey holds promise for locating and evaluating leveled mounds because it is rapid and sensitive to magnetic variations associated with anticipated features such as pits and deposits of mound fill. As a case study, we discuss our magnetic survey of the Gast Farm site (13LA12) in eastern Iowa. The survey covered 8.64 ha, encompassing loci of one previously reported mound and possible geometric earthworks as well as Middle and Late Woodland habitation areas. Interpretation of survey results incorporated quantitative differentiation of magnetic anomaly types using GIS techniques, along with standard visual inspection. We found no evidence of geometric earthworks but identified at least six leveled mounds. Displaced mound fill appears to account for the earthwork-like features. We conclude that leveled mounds are detectable and may retain subsurface integrity. Their associated features, including burials, may be identifiable even when above-ground evidence has disappeared.
Potential effectiveness of harvest weed seed control (HWSC) systems depends upon seed shatter of the target weed species at crop maturity, enabling its collection and processing at crop harvest. However, seed retention likely is influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed-shatter phenology in 13 economically important broadleaf weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after physiological maturity at multiple sites spread across 14 states in the southern, northern, and mid-Atlantic United States. Greater proportions of seeds were retained by weeds in southern latitudes and shatter rate increased at northern latitudes. Amaranthus spp. seed shatter was low (0% to 2%), whereas shatter varied widely in common ragweed (Ambrosia artemisiifolia L.) (2% to 90%) over the weeks following soybean physiological maturity. Overall, the broadleaf species studied shattered less than 10% of their seeds by soybean harvest. Our results suggest that some of the broadleaf species with greater seed retention rates in the weeks following soybean physiological maturity may be good candidates for HWSC.
Precise instrumental calibration is of crucial importance to 21-cm cosmology experiments. The Murchison Widefield Array’s (MWA) Phase II compact configuration offers us opportunities for both redundant calibration and sky-based calibration algorithms; using the two in tandem is a potential approach to mitigate calibration errors caused by inaccurate sky models. The MWA Epoch of Reionization (EoR) experiment targets three patches of the sky (dubbed EoR0, EoR1, and EoR2) with deep observations. Previous work in Li et al. (2018) and (2019) studied the effect of tandem calibration on the EoR0 field and found that it yielded no significant improvement in the power spectrum (PS) over sky-based calibration alone. In this work, we apply similar techniques to the EoR1 field and find a distinct result: the improvements in the PS from tandem calibration are significant. To understand this result, we analyse both the calibration solutions themselves and the effects on the PS over three nights of EoR1 observations. We conclude that the presence of the bright radio galaxy Fornax A in EoR1 degrades the performance of sky-based calibration, which in turn enables redundant calibration to have a larger impact. These results suggest that redundant calibration can indeed mitigate some level of model incompleteness error.
Seed shatter is an important weediness trait on which the efficacy of harvest weed seed control (HWSC) depends. The level of seed shatter in a species is likely influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed shatter of eight economically important grass weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after maturity at multiple sites spread across 11 states in the southern, northern, and mid-Atlantic United States. From soybean maturity to 4 wk after maturity, cumulative percent seed shatter was lowest in the southern U.S. regions and increased moving north through the states. At soybean maturity, the percent of seed shatter ranged from 1% to 70%. That range had shifted to 5% to 100% (mean: 42%) by 25 d after soybean maturity. There were considerable differences in seed-shatter onset and rate of progression between sites and years in some species that could impact their susceptibility to HWSC. Our results suggest that many summer annual grass species are likely not ideal candidates for HWSC, although HWSC could substantially reduce their seed output during certain years.
Background: Accurate identification of Clostridioides difficile infections (CDIs) from electronic data sources is important for surveillance. We evaluated how frequently laboratory findings were supported by diagnostic coding and treatment data in the electronic health record. Methods: We analyzed a retrospective cohort of patients in the Veterans’ Affairs Health System from 2006 through 2016. A CDI event was defined as a positive laboratory test for C. difficile toxin or toxin genes in the inpatient, outpatient, or long-term care setting with no prior positive test in the preceding 14 days. Events were classified as incident (no CDI in the prior 56 days), or recurrent (CDI in the prior 56 days) and were evaluated for evidence of clinical diagnosis based on International Classification of Disease, Ninth Revision, Clinical Modification (ICD-9-CM) and ICD-10-CM codes and at least 1 dose of an anti-CDI agent (intravenous or oral metronidazole, fidaxomicin, or oral vancomycin). We further assessed the possibility of treatment without testing by quantifying positive laboratory tests and diagnostic codes among inpatients receiving an anti-CDI agent. A course of anti-CDI therapy was defined as continuous treatment with the same drug. Results: Among 119,063 incident and recurrent CDI events, 70,114 (58.9%) had a diagnosis code and 15,850 (13.3%) had no accompanying treatment. The proportion of patients with ICD codes was highest among patients treated with fidaxomicin (82.6% of 906) or oral vancomycin (74.3% of 30,777) and was lower among patients receiving metronidazole (63.3% of 103,231) and those without treatment (29.9% of 15,850). The proportion of events with ICD codes and treatment was similar between incident and recurrent episodes. During the study period, there were ~470,000 inpatient courses of metronidazole, fidaxomicin, and oral vancomycin. Table 1 shows the presence of ICD codes and positive laboratory tests by anti-CDI agents. Among 51,100 courses of oral vancomycin, 51% had an ICD code and 44% had a positive test for C. difficile within 7 days of treatment initiation. Among 1,013 courses of fidaxomicin, 79% had an ICD code and 56% had a positive laboratory test. Conclusions: In this large cohort, there was evidence of substantial CDI treatment without confirmatory C. difficile testing and, to a lesser extent, some positive tests without accompanying treatment or coding. A combination of data sources may be needed to more accurately identify CDI from electronic health records for surveillance purposes.
This article explores the causes of authoritarian durability. Why do some authoritarian regimes survive for decades, often despite severe crises, while others collapse quickly, even absent significant challenges? Based on an analysis of all authoritarian regimes between 1900 and 2015, the authors argue that regimes founded in violent social revolution are especially durable. Revolutionary regimes, such as those in Russia, China, Cuba, and Vietnam, endured for more than half a century in the face of strong external pressure, poor economic performance, and large-scale policy failures. The authors develop and test a theory that accounts for such durability using a novel data set of revolutionary regimes since 1900. The authors contend that autocracies that emerge out of violent social revolution tend to confront extraordinary military threats, which lead to the development of cohesive ruling parties and powerful and loyal security apparatuses, as well as to the destruction of alternative power centers. These characteristics account for revolutionary regimes’ unusual longevity.
Personal protective equipment (PPE) is worn by prehospital providers (PHPs) for protection from hazardous exposures. Evidence regarding the ability of PHPs to perform resuscitation procedures has been described in adult but not pediatric models. This study examined the effects of PPE on the ability of PHPs to perform resuscitation procedures on pediatric patients.
Methods:
This prospective study was conducted at a US simulation center. Paramedics wore normal attire at the baseline session and donned full Level B PPE for the second session. During each session, they performed timed sets of psychomotor tasks simulating clinical care of a critically ill pediatric patient. The difference in time to completion between baseline and PPE sessions per task was examined using Wilcoxon signed-rank tests.
Results:
A total of 50 paramedics completed both sessions. Median times for task completion at the PPE sessions increased significantly from baseline for several procedures: tracheal intubation (+4.5 s; P = 0.01), automated external defibrillator (AED) placement (+9.5 s; P = 0.01), intraosseous line insertion (+7 s; P < 0.0001), tourniquet (+8.5 s; P < 0.0001), intramuscular injection (+21-23 s, P < 0.0001), and pulse oximetry (+4 s; P < 0.0001). There was no significant increase in completion time for bag-mask ventilation or autoinjector use.
Conclusions:
PPE did not have a significant impact on PHPs performing critical tasks while caring for a pediatric patient with a highly infectious or chemical exposure. This information may guide PHPs faced with the situation of resuscitating children while wearing Level B PPE.
Despite their legal protection status, protected areas (PAs) can benefit from priority ranks when ongoing threats to their biodiversity and habitats outpace the financial resources available for their conservation. It is essential to develop methods to prioritize PAs that are not computationally demanding in order to suit stakeholders in developing countries where technical and financial resources are limited. We used expert knowledge-derived biodiversity measures to generate individual and aggregate priority ranks of 98 mostly terrestrial PAs on Madagascar. The five variables used were state of knowledge (SoK), forest loss, forest loss acceleration, PA size and relative species diversity, estimated by using standardized residuals from negative binomial models of SoK regressed onto species diversity. We compared our aggregate ranks generated using unweighted averages and principal component analysis (PCA) applied to each individual variable with those generated via Markov chain (MC) and PageRank algorithms. SoK significantly affected the measure of species diversity and highlighted areas where more research effort was needed. The unweighted- and PCA-derived ranks were strongly correlated, as were the MC and PageRank ranks. However, the former two were weakly correlated with the latter two. We recommend using these methods simultaneously in order to provide decision-makers with the flexibility to prioritize those PAs in need of additional research and conservation efforts.
Harvest weed seed control (HWSC) technology, such as impact mills that destroy weed seeds in seed-bearing chaff material during grain crop harvest, has been highly effective in Australian cropping systems. However, the impact mill has never been tested in soybeans [Glycine max (L.) Merr.] and weeds common to soybean production systems in the midwestern and mid-Atlantic United States. We conducted stationary testing of Harrington Seed Destructor (HSD) impact mill and winter burial studies during 2015 to 2016 and 2017 to 2018 to determine (1) the efficacy of the impact mill to target weed seeds of seven common weeds in midwestern and five in the mid-Atlantic United States, and (2) the fate of impact mill–processed weed seeds after winter burial. The impact mill was highly effective in destroying seeds of all the species tested, with 93.5% to 99.8% weed seed destruction in 2015 and 85.6% to 100% in 2017. The weak relationships (positive or negative) between seed size and seed destruction by impact mill and the high percentage of weed seed destruction by impact mill across all seed sizes indicate that the biological or practical effect of seed size is limited. The impact mill–processed weed seeds that retained at least 50% of their original size, labeled as potentially viable seed (PVS), were buried for 90 d overwinter to determine the fate of weed seeds after winter burial. At 90 d after burial, the impact mill–processed PVS were significantly less viable than unprocessed control seeds, indicating that impact mill processing physically damaged the PVS and promoted seed mortality overwinter. A very small fraction (<0.4%) of the total weed seed processed by the impact mill remained viable after winter burial. The results presented here demonstrate that the impact mill is highly effective in increasing seed mortality and could potentially be used as an HWSC tactic for weed management in this region.
As demonstrated by neuroimaging data, the human brain contains systems that control responses to threat. The revised Reinforcement Sensitivity Theory of personality predicts that individual differences in the reactivity of these brain systems produce anxiety and fear-related personality traits. Here we discuss some of the challenges in testing this theory and, as an example, present a pilot study that aimed to dissociate brain activity during pursuit by threat and goal conflict. We did this by translating the Mouse Defense Test Battery for human fMRI use. In this version, dubbed the Joystick Operated Runway Task (JORT), we repeatedly exposed 24 participants to pursuit and goal conflict, with and without threat of electric shock. The runway design of JORT allowed the effect of threat distance on brain activation to be evaluated independently of context. Goal conflict plus threat of electric shock caused deactivation in a network of brain areas that included the fusiform and middle temporal gyri, as well as the default mode network core, including medial frontal regions, precuneus and posterior cingulate gyrus, and laterally the inferior parietal and angular gyri. Consistent with earlier research, we also found that imminent threat activated the midbrain and that this effect was significantly stronger during the simple pursuit condition than during goal conflict. Also consistent with earlier research, we found significantly greater hippocampal activation during goal conflict than pursuit by imminent threat. In conclusion, our results contribute knowledge to theories linking anxiety disorders to altered functioning in defensive brain systems and also highlight challenges in this research domain.