We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
By
Andrea Geissler, Williamson Centre for Molecular Environmental Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, United Kingdom,
Sonja Selenska-Pobell, Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, Dresden, Germany,
Katherine Morris, Institute of Geological Sciences, School of Earth and Environment, University of Leeds, United Kingdom,
Ian T. Burke, Institute of Geological Sciences, School of Earth and Environment, University of Leeds, United Kingdom,
Francis R. Livens, Centre for Radiochemistry Research, Department of Chemistry, University of Manchester, United Kingdom,
Jonathan R. Lloyd, Centre for Radiochemistry Research, Department of Chemistry, University of Manchester, United Kingdom
The release of radionuclides from nuclear and mining sites and their subsequent mobility in the environment is a subject of intense public concern and has promoted much recent research into the environmental fate of radioactive waste (Lloyd & Renshaw 2005b). Naturally occurring radionuclides can input significant quantities of radioactivity into the environment while both natural and artificial/manmade radionuclides have also been released as a consequence of nuclear weapons testing in the 1950s and 1960s, and via accidental release, e.g., from Chernobyl in 1986. The major burden of anthropogenic environmental radioactivity, however, is from the nuclear facilities themselves and includes the continuing controlled discharge of process effluents produced by industrial activities allied to the generation of nuclear power.
Wastes containing radionuclides are produced at the many steps in the nuclear fuel cycle, and vary considerably from low level, high-volume radioactive effluents produced during uranium mining to the intensely radioactive plant, fuel and liquid wastes produced from reactor operation and fuel reprocessing (Lloyd & Renshaw 2005b). The stewardship of these contaminated waste-streams needs a much deeper understanding of the biological and chemical factors controlling the mobility of radionuclides in the environment. Indeed, this is highly relevant on a global stage as anthropogenic radionuclides have been dispersed to the environment both by accident and as part of a controlled/monitored release, e.g., in effluents.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.