We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Spatial profiles of impurity emission measurements in the extreme ultraviolet (EUV) spectroscopic range in radiofrequency (RF)-heated discharges are combined with one-dimensional and three-dimensional transport simulations to study the effects of resonant magnetic perturbations (RMPs) on core impurity accumulation at EAST. The amount of impurity line emission mitigation by RMPs appears to be correlated with the ion Z for lithium, carbon, iron and tungsten monitored, i.e. stronger suppression of accumulation for heavier ions. The targeted effect on the most detrimental high-Z impurities suggests a possible advantage using RMPs for impurity control. Profiles of transport coefficients are calculated with the STRAHL one-dimensional impurity transport code, keeping $\nu /D$ fixed and using the measured spatial profiles of $\textrm{F}{\textrm{e}^{20 + }}$, $\textrm{F}{\textrm{e}^{21 + }}$ and $\textrm{F}{\textrm{e}^{22 + }}$ to disentangle the transport coefficients. The iron diffusion coefficient ${D_{\textrm{Fe}}}$ increases from $1.0- 2.0\;{\textrm{m}^2}\;{\textrm{s}^{ - 1}}$ to $1.5- 3.0\;{\textrm{m}^2}\;{\textrm{s}^{ - 1}}$ from the core region to the edge region $(\rho \gt 0.5)$ after the onset of RMPs. Meanwhile, an inward pinch of iron convective velocity ${\nu _{\textrm{Fe}}}$ decreases in magnitude in the inner core region and increases significantly in the outer confined region, simultaneously contributing to preserving centrally peaked $\textrm{Fe}$ profiles and exhausting the impurities. The ${D_{\textrm{Fe}}}$ and ${\nu _{\textrm{Fe}}}$ variations lead to reduced impurity contents in the plasma. The three-dimensional edge impurity transport code EMC3-EIRENE was also applied for a case of RMP-mitigated high-Z accumulation at EAST and compared to that of low-Z carbon. The exhaust of ${\textrm{C}^{6 + }}$ toward the scrape-off layer accompanying an overall suppression of heavier ${\textrm{W}^{30 + }}$ is observed when using RMPs.
The association between 25-hydroxyvitamin D (25(OH)D) and maternal depression (MD) is deemed to be inconclusive. The current analysis aimed to quantify the relationship between 25(OH)D serum concentrations, the main indicator of vitamin D nutritional status, and MD.
Design:
Dose–response meta-analysis.
Setting:
A systematic search in PubMed, Embase and Web of Science from inception to June 2019.
Participants:
Relevant observational studies reporting risk estimates and 95 % CI of random effects for 25(OH)D concentration on MD were identified.
Results:
Twelve observational studies with thirteen independent reports involving 10 317 pregnant women were included. Compared with the lowest category of 25(OH)D, the pooled OR for the highest category of MD was 0·49 (95 % CI 0·35, 0·63); a high heterogeneity was observed (P = 0·001, I2 = 82·1 %). A non-linear association between 25(OH)D and MD was found (P for non-linearity = 0·001); the dose–response analysis indicated that the lowest pooled OR was at blood 25(OH)D concentrations of 90–110 nmol/l. Subgroup analyses suggested a stronger association between 25(OH)D and MD in summer time (OR 0·25, 95 % CI 0·08, 0·43) than in other seasons (OR 0·68, 95 % CI 0·52, 0·83) (P for interaction = 0·008). A visual inspection of funnel plot and Begg’s and Egger’s tests did not indicate any evidence of publication bias.
Conclusions:
Low circulating 25(OH)D is associated with MD, and our analysis suggests that they influence each other. Further randomised controlled trials would be needed to determine the direction of causation.
The Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a public health emergency of international concern. The current study aims to explore whether the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are associated with the development of death in patients with COVID-19. A total of 131 patients diagnosed with COVID-19 from 13 February 2020 to 14 March 2020 in a hospital in Wuhan designated for treating COVID-19 were enrolled in the current study. These 131 patients had a median age of 64 years old (interquartile range: 56–71 years old). Furthermore, among these patients, 111 (91.8%) patients were discharged and 12 (9.2%) patients died in the hospital. The pooled analysis revealed that the NLR at admission was significantly elevated for non-survivors, when compared to survivors (P < 0.001). The NLR of 3.338 was associated with all-cause mortality, with a sensitivity of 100.0% and a specificity of 84.0% (area under the curve (AUC): 0.963, 95% confidence interval (CI) 0.911–1.000; P < 0.001). In view of the small number of deaths (n = 12) in the current study, NLR of 2.306 might have potential value for helping clinicians to identify patients with severe COVID-19, with a sensitivity of 100.0% and a specificity of 56.7% (AUC: 0.729, 95% CI 0.563–0.892; P = 0.063). The NLR was significantly associated with the development of death in patients with COVID-19. Hence, NLR is a useful biomarker to predict the all-cause mortality of COVID-19.
A credit default swap (CDS) is an exchange of premium payments for a compensation for the occurrence of a credit event. Counterparty risks refer to defaults of parties holding CDS contracts. In this paper we develop a valuation/pricing model for a CDS subject to counterparty risks. Using the Cox–Ingersoll–Ross (CIR) model for interest rate and first arrival times of Poisson processes with variable intensities for the occurrences of credit default and counterparty defaults, we derive a mathematical formulation and make a full theoretical investigation. In addition, we develop a full theory for the corresponding infinite horizon problem and establish its connection with the asymptotic long expiry behaviour of finite horizon problem. Furthermore, we establish a connection between two major frameworks for default times: the structure model approach and the intensity model approach. We show that a solution of the structure model can be obtained as the limit of a sequence of solutions of intensity models. Regarded as an important theoretical development, we remove a constraint typically imposed on the parameters of the CIR model; that is, the well-posedness (existence, uniqueness and continuous dependence of parameters) of the mathematical model holds for any empirically calibrated parameters for the CIR model.
Uniform distribution of diamond grains is difficult to achieve using traditional fabrication of the micro grinding wheel. The design and performance of novel resinous diamond composites (RDCs) fabricated by hot pressing molding were studied to fabricate micro resinous diamond grinding wheels. The physical and mechanical properties of RDCs were analyzed by constructing and simulating five kinds of RDCs, including acrylonitrile butadiene styrene (ABS)/polyvinyl chloride (PVC)/dioctyl phthalate (DOP)/diamond materials with different mass ratios. Diamond grains presented good compatibility with the ABS–PVC–DOP copolymer, which resulted in improved mechanical properties of RDCs. RDC1–RDC5 samples were fabricated, and their hardness, surface roughness, and infrared spectra were analyzed. The optimal mass ratio of ABS/PVC/diamond/DOP for fabricating RDCs was 62.5/18.6/10.6/8.3. The results provide guidance in fabricating novel materials for resinous diamond grinding wheels with desirable performances for precision and ultraprecision machining.
We present updated U–Pb ages and Hf isotopic compositions of detrital zircons and whole-rock geochemical data to investigate the provenance and tectonic setting of late Neoproterozoic and early Cambrian sandstones from the Cathaysia Block, in order to offer new constraints on its tectonic evolution and its palaeo-position within the supercontinent. The source rocks for the studied sandstones were dominated by felsic–intermediate materials with moderate weathering history. U–Pb dating results show major populations at c. 2500 Ma, 1000–900 Ma and 870–716 Ma with subordinate peaks at 655–532 Ma, consistent with the global Neoarchean continental crust growth, assembly and break-up of Rodinia, and Pan-African Event associated with the formation of Gondwana. Zircon U–Pb ages and Hf isotopic data suggest that most derived from exotic terranes once connected to the Cathaysia Block. Using whole-rock geochemical analysis, it was determined that the studied sedimentary rocks were deposited in a passive continental margin and the Cathaysia and Yangtze blocks were part of the same continent; no Cambrian ocean existed between them. Compiling a detrital zircon dataset from Qiangtang, northern India, the Lhasa Terrane and Western Australia, the Cathaysia Block seems to be more similar to the Qiangtang and western part of the northern India margin, instead of having a direct connection with the Lhasa Terrane and Western Australia in the Gondwana reconstruction during the late Neoproterozoic and Cambrian eons.
The Weibel instability and the induced magnetic field are of great importance for both astrophysics and inertial confinement fusion. Because of the stochasticity of this magnetic field, its main wavelength and mean strength, which are key characteristics of the Weibel instability, are still unobtainable experimentally. In this paper, a theoretical model based on the autocorrelation tensor shows that in proton radiography of the Weibel-instability-induced magnetic field, the proton flux density on the detection plane can be related to the energy spectrum of the magnetic field. It allows us to extract the main wavelength and mean strength of the two-dimensionally isotropic and stochastic magnetic field directly from proton radiography for the first time. Numerical calculations are conducted to verify our theory and show good consistency between pre-set values and the results extracted from proton radiography.
The potential function V satisfies the conditions that the essential spectrum of the Dirac operator is and this Dirac operator has infinitely many eigenvalues in (−1, 1) accumulating at 1. This potential function V may change sign in ℝ3 and contains the classical Coulomb potential V (x) = −γ/|x| with γ > 0 as a special case. The nonlinearity F satisfies the resonance-type condition lim. Under some additional conditions on V and F, we prove that this equation has infinitely many solutions.
The Beidou System (BDS) started functioning at the end of 2012. The Yaw-Steering (YS) attitude mode for Inclined Geosynchronous Orbit (IGSO) and Medium Earth Orbit (MEO) satellites in BDS ensures that the solar panels face the Sun. The orbit radial accuracies for IGSO/MEO satellites are 0·5 m and the User Equivalent Range Errors (UERE) are 1·5 m in YS mode. BDS-2 satellites adopt Orbit-Normal (ON) mode to meet the power supply and thermal control requirements of the satellite during deep Earth eclipse periods. In ON mode, long-term orbit ephemeris accuracy monitoring in the Operational Control System (OCS) of BDS indicates that the orbit accuracies for IGSO/MEOs are reduced to a few hundreds of metres, seriously affecting the positioning accuracy and navigation service capability of the BDS system. Solar Radiation Pressure (SRP) is difficult to model in ON mode. Continuous Yaw-Steering (CYS) mode is available for new generation Beidou satellites launched since 2015. The orbit accuracies for these new generation Beidou (BDS-3) satellites were estimated based on BDS monitoring station data and SRP models including ECOM 9/5/3. The evaluation method consisted of four steps, namely, orbit internal consistency analysis, UERE calculation, Satellite Laser Ranging (SLR) data fitting Root Mean Square (RMS) determinations and positioning performance analysis; the data gathering period lasted for more than 60 days and included two CYS periods and one ON period. The experiments showed that the orbit accuracy of the radial component in CYS mode for the BDS-3 satellites degrades by 2 to 3 cm and positioning accuracy degrades only by 1 cm over that in YS mode which is just a small reduction in accuracy compared with the decimetre-level BDS orbit accuracy and the metre-level single point positioning accuracy with BDS pseudorange data. This overcomes declining orbit and positioning accuracy issues in ON mode for BDS-2 satellites. Other results also show that the reliability of BDS has been improved.
SCN5A encodes sodium-channel α-subunit Nav1.5. The mutations of SCN5A can lead to hereditary cardiac arrhythmias such as the long-QT syndrome type 3 and Brugada syndrome. Here we sought to identify novel mutations in a family with arrhythmia.
Methods
Genomic DNA was isolated from blood of the proband, who was diagnosed with atrial flutter. Illumina Hiseq 2000 whole-exome sequencing was performed and an arrhythmia-related gene-filtering strategy was used to analyse the pathogenic genes. Sanger sequencing was applied to verify the mutation co-segregated in the family.
Results and conclusions
A novel missense mutation in SCN5A (C335R) was identified, and this mutation co-segregated within the affected family members. This missense mutation was predicted to result in amplitude reduction in peak Na+ current, further leading to channel protein dysfunction. Our study expands the spectrum of SCN5A mutations and contributes to genetic counselling of families with arrhythmia.
The crystal structure and thermal expansion of the perovskite samarium cobalt oxide (SmCoO3) have been determined over the temperature range 295–1245 K by Rietveld analysis of X-ray powder diffraction data. Polycrystalline samples were prepared by a sol–gel synthesis route followed by high-temperature calcination in air. SmCoO3 is orthorhombic (Pnma) at all temperatures and is isostructural with GdFeO3. The structure was refined as a distortion mode of a parent
$ Pm{\bar 3}m $
structure. The thermal expansion was found to be non-linear and anisotropic, with maximum average linear thermal expansion coefficients of 34.0(3) × 10−6, 24.05(17) × 10−6, and 24.10(18) × 10−6 K−1 along the a-, b-, and c-axes, respectively, between 814 and 875 K.
A novel uniplanar wideband magneto-electric dipole antenna element is proposed in this paper. The proposed antenna is composed of the conventional bow-tie radiation patch as an electric dipole, a semi-circular loop, which works as a magnetic dipole, a coplanar ground plane, two directors with different lengths for enhancing gain, and a microstrip-to-coplanar stripline transition balun. The designed antenna adopts a small-size coplanar ground plane to achieve a uniplanar structure. Consequently, this method reduces the space size immensely and makes the antenna suitable for the array application. In addition, a tapered slot structure is utilized to improve impedance matching. The prototype of the proposed antenna was fabricated and measured. The measured results keep in good accordance with the simulated ones. The simulated results show that the proposed antenna obtains a broad impedance bandwidth of 60.5% from 2.25 to 4.20 GHz (voltage standing wave ratio [VSWR] ≤ 2) which can be applied for wireless local area network (WLAN) (2.4–2.484 GHz), worldwide interoperability for microwave access (WiMAX) (2.5–2.69/3.4–3.69 GHz), and long term evolution (LTE) (2.5–2.69 GHz). Meanwhile, the stable gain, low cross-polarization, stable unidirectional radiation patterns, and low back lobe are obtained within the operating frequency band. The array composed of the proposed antenna elements is also investigated in this paper.
An effective multiplex real-time polymerase chain reaction (PCR) assay for the simultaneous detection of three major pathogens, Nosema bombycis Nägeli (Microsporidia: Nosematidae), Bombyx mori nucleopolyhedrovirus (Baculoviridae: genus Alphabaculovirus) (NPV), and Bombyx mori densovirus (Parvoviridae: genus Iteravirus) (DNV), in silkworms (Bombyx mori (Linnaeus); Lepidoptera: Bombycidae) was developed in this study. Polymerase chain reaction and real-time PCR tests and basic local alignment search tool searches revealed that the primers and probes used in this study had high specificities for their target species. The ability of each primer/probe set to detect pure pathogen DNA was determined using a plasmid dilution panel, in which under optimal conditions the multiplex real-time PCR assay showed high efficiency in the detection of three mixed target plasmids with a detection limit of 8.5×103 copies for N. bombycis and Bombyx mori NPV (BmNPV) and 8.5×104 copies for Bombyx mori DNV (BmDNV). When the ability to detect these three pathogens was examined in artificially inoculated silkworms, our method presented a number of advantages over traditional microscopy, including specificity, sensitivity, and high-throughput capabilities. Under the optimal volume ratio for the three primer/probe sets (3:2:2=N. bombycis:BmNPV:BmDNV), the multiplex real-time PCR assay showed early detection of BmNPV and BmDNV by day 1 post inoculation using DNA templates of the three pathogens in various combinations from individually infected silkworms; the early detection of N. bombycis was possible by day 3 post inoculation using the DNA isolated from the midgut of N. bombycis-infected silkworms.
This work presents a brief introduction on three kinds of newly developed
$\text{Nd}^{3+}$
-doped laser glasses in Shanghai Institute of Optics and Fine Mechanics (SIOM), China. Two
$\text{Nd}^{3+}$
-doped phosphate glasses with lower thermal expansion coefficient and thermal shock resistance 4 times higher than that of N31 glass are developed for laser processing. Nd:Silicate and Nd:Aluminate glasses with peak emission wavelength at 1061 and 1065 nm, effective emission bandwidth of 34 and 50 nm, respectively, are developed for Exawatt-class laser system application. Fluorophosphate glasses with low nonlinear refractive index (
$n_{2}=0.6{-}0.86$
) and long fluorescence lifetime (
$430{-}510~\unicode[STIX]{x03BC}\text{s}$
) are investigated for the purpose of decreasing B integral in high-power laser system. The properties of all these glasses are presented and compared with those of commercial neodymium laser glasses.
The ordering of polarization field of inhomogeneous ferroelectric systems were investigated. We found that these systems exhibit rather complex polarization ordering behaviors with the coexistence of polar and toroidal ordering, and particularly, a novel and tunable polar-toroidal phase transformation under external mechanical, electrical or thermal fields. Accompanying with this polar-toroidal phase transformation, there is a large change of polarization and strain. As a result, large eletromechanical and thermomechanical performance can be achieved in these systems. The polar/toroidal phase boundaries can be regarded a new kind of morphotropic phase boundary (MPB). The polar-toroidal phase transformation in nanoscale ferroelectric systems should provide us a novel strategy to develop energy conversion nanodevices.
In this study, the wetting behaviors of an underwater oil droplet on structured
surfaces were investigated using molecular dynamics simulations and experiments.
The wetting states and contact angles of the underwater oil droplet on different
hydrophobic surfaces were simulated. The simulation results showed that there
were three kinds of equilibrium states on the pillar surfaces: the Wenzel,
cross, and Cassie states. Moreover, the equilibrium state of the underwater oil
droplet transformed from a Wenzel to Cassie state when the water contact angle
decreased. The contact angle of the underwater oil droplet increased as the
water contact angle decreased. Furthermore, the wetting behaviors of the
underwater oil droplet on rough polytetrafluoroethylene and silicon surfaces
were studied in experiments. The experimental results also indicated that the
contact angle of the underwater oil droplet increased as the water contact angle
decreased, which corresponded well with the simulation results.
Understanding the physiological mechanisms of biomass accumulation and partitioning in the grain, and the nitrogen (N) uptake associated with different plant densities and N management strategies, is essential for achieving both high yield and N use efficiency (NUE) in maize plants. A field experiment was conducted in 2013 and 2014, using five rates of N application and three plant densities (6·0, 7·5 and 9·0 plants/m2) in Quzhou County on the North China Plain (NCP). The objective was to evaluate whether higher plant density can produce more biomass allocated to the grain to achieve higher grain yield and to determine the optimal N management strategies for different plant densities. The highest grain yield and NUE were achieved in the 7·5 plants/m2 treatment; both the sub-optimal (6·0 plants/m2) and supra-optimal (9·0 plants/m2) plant densities resulted in diminished yield and NUE. Compared to 6·0 plants/m2, the 7·5 plants/m2 treatment displayed higher biomass accumulation during the grain-filling period and also exhibited more biomass allocated to kernels with similar total biomass accumulation compared with the 9·0 plants/m2 treatment, which contributed to its higher grain yield. The N uptake in the 7·5 plants/m2 treatment was similar to that in the 9·0 plants/m2 treatment up to pre-silking. However, the post-silking N uptake of the 7·5 plants/m2 treatment was 66·4 kg/ha, which was 29·1% higher than that of the 9·0 plants/m2 treatment. Furthermore, the highest maize grain yield was achieved in the 0·7 × optimal N rate (ONR × 0·7), ONR and ONR × 1·3 treatments for 6·0, 7·5 and 9·0 plants/m2, respectively, which suggests that different N management strategies are needed for different plant densities. In conclusion, selecting a planting density of 7·5 plants/m2 with an in-season root zone N management is a potentially effective strategy for achieving high grain yield and high NUE for maize production on the NCP.
This paper presents a Chinese adaption of the Formal Characteristics of the Behavior-Temperament Inventory (FCB-TI), a self-report instrument that evaluates six temperamental scales, based on Strelau’s concept of temperament. A first sample of 626 undergraduates completed the Chinese version of the Regulative Theory of Temperament Questionnaire (RTTQ), which is an initial pool of 381 items. Internal consistency suggests adequate reliability (.66 to .82), and an exploratory factor analysis revealed a six-factor solution consistent with the original instrument. A follow-up confirmatory factor analysis revealed good support for the temperament structure with a second sample of students (N = 2.980). Internal consistency and factorial structure were re-examined (Cronbach’s alpha ranged .64 to .85), and test-retest correlations over a two-week period ranged from .82 to .96 with a third sample of adults (N = 2.265). Convergent and discriminant validity was explored in relation to the Eysenck Personality Questionnaire-Revision Short Scale for Chinese (EPQ-RSC) model dimensions. Results indicate that the Chinese version of the FCB-TI has similar psychometric properties and generally satisfactory reliability and validity.