We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Meteoritic evidence shows that the Solar system at birth contained significant quantities of short-lived radioisotopes (SLRs) such as 60Fe and 26Al produced in supernova explosions and in the Wolf-Rayet winds. Explaining how they travelled from these origin sites to the primitive Solar system before decaying is an outstanding problem. In this paper, we present a chemo-hydrodynamical simulation of the entire Milky Way to measure for the distribution of 60Fe/56Fe and 26Al/27Al ratios over all stars in the Galaxy. We show that the Solar abundance ratios are well within the normal range. We find that SLRs are abundant in newborn stars because star formation is correlated on Galactic scales, so that ejecta preferentially enrich atomic gas that will subsequently be accreted onto existing GMCs or will form new ones. Thus new generations of stars preferentially form in patches of the Galaxy contaminated by previous generations of stellar feedback.
Abstract Circumstellar disks are a natural outcome of the star-formation process and the sites where planets form. Gas, mainly hydrogen and helium, accounts for about 99% of the disk's initial mass while dust, in the form of submicron-sized grains, only for about 1%. In the process of forming planets circumstellar disks disperse: submicron dust grains collide and stick together to form larger aggregates; gas accretes onto the star, onto the cores of giant and icy planets, and evaporates from the disk surface. A key question in planet formation is the timescale and physical mechanism for the clearing of protoplanetary disks. How rapidly gas and dust disperse determines what type of planets can form.
In this chapter we compare the evolution of protoplanetary disks to that of the proto-solar nebula. We start by summarizing the observational constraints on the lifetime of protoplanetary disks and discuss four major disk-dispersal mechanisms. Then, we seek constraints on the clearing of gas and dust in the proto-solar nebula from the properties of meteorites, asteroids, and planets. Finally, we try to anchor the evolution of protoplanetary disks to the Solar System chronology and discuss what observations and experiments are needed to understand how common is the history of the Solar System.
The observed lifetime of protoplanetary disks
Observations at different wavelengths trace different disk regions (see e.g. Chapter 3). Therefore, determining when disks disperse requires multi-wavelength observations of disks around stars of different ages. The ages of young stars (younger than ∼100 Myr) are typically estimated by comparing their positions in the Hertzsprung–Russell diagram to predictions from pre-main-sequence evolutionary tracks.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.