We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Introduced plants threaten biodiversity and ecosystem processes, including carbon (C) and nitrogen (N) cycles, but little is known about the threshold at which such effects occur. We examined the impact of the invasive shrub Amur honeysuckle on soil organic carbon (SOC) and N density at study sites that varied in invasion history. In plots with and without honeysuckle, we measured honeysuckle abundance and size (basal area) and extracted soil cores. SOC and N densities were highest at the site with the longest invasion history and highest invasion intensity (i.e., greatest abundance and basal area of honeysuckle). Basal area of honeysuckle positively affected SOC and N densities likely because of increased litter decomposition and altered microbial communities. Because honeysuckle increases forest net primary productivity (NPP) and SOC, it also may play a role in C sequestration. Our results demonstrate the need to consider the influence of invasion history and intensity when evaluating the potential impact of invasive species.
Northern Appalachian Basin deposits and associated fossils have served as exemplars for ecological-evolutionary investigations, and as the reference interval for the concept of coordinated stasis. Here, we examine faunal and environmental changes within the uppermost Hamilton and lowermost Genesee Groups of the late Middle Devonian succession of New York State. Dramatic diversity loss, faunal migrations, and ecological restructuring recognized in these strata have been used previously to define the end of the Hamilton ecological-evolutionary subunit, and, furthermore, these strata and corresponding faunal changes represent the type region for the global Taghanic Biocrisis. We present and analyze a new, high-resolution data set of post-Taghanic Genesee fossil assemblages, in which we recognize 11 biofacies corresponding to an onshore-offshore (depth) gradient. The Genesee Fauna shows an unexpectedly high taxonomic similarity to nearshore biofacies of the pre-Taghanic Hamilton Fauna, related to the persistence of siliciclastic-dominated nearshore settings through the Taghanic Biocrisis, whereas the onset of anoxic/dysoxic conditions typified offshore portions of the environmental gradient. The “Nearshore Refugium Model” of Erwin offers a possible explanation for the persistence of taxa through the biocrisis in nearshore settings. This constriction was followed by subsequent expansion of these residual taxa to offshore environments in relatively similar associations, as increased Acadian orogenic activity and resultant delta progradation increased habitable space offshore by decreasing the extent of deeper-water, oxygen-poor settings. Although taxonomic similarity was high between the Hamilton and Genesee Faunas, biofacies structure differed primarily because of tectonically driven physical transformations to the basin and associated biotic turnover. Nevertheless, the combination of high taxonomic persistence of Hamilton nearshore taxa and the introduction of relatively few new taxa in the Genesee Fauna resulted in a taxonomic holdover that was much higher than observed in the original formulation of coordinated stasis.
Although morphological variation is known to influence the evolutionary fates of species, the relationship between morphological variation and survivorship in the face of extinction-inducing perturbations is poorly understood. Here, we investigate this relationship for veneroid bivalves in association with the Plio-Pleistocene extinction in Florida. Fourteen pairs of related species were selected for analysis, with each pair including one species that survived the Plio-Pleistocene extinction and another that became extinct during the interval. Morphological landmark data were acquired for more than 1500 museum specimens, representing 19 localities that encompass four well-known Plio-Pleistocene units in the study region. Procrustes superimposition was applied to each sample, and overall multivariate variation was calculated as the mean squared partial Procrustes distance between specimens and their mean form. Morphological variation was calculated at three geographic scales for each species, and differences in variation between survivors and victims were examined within each species pair. Results indicate that species surviving the Plio-Pleistocene extinction were significantly more variable morphologically than victims. Greater morphological variation may promote survivorship by directly enhancing species adaptations to changing conditions or by permitting the occupation of a larger geographic range. Alternatively, high morphological variation and survivorship may both be mediated by a third variable, such as large geographic range.
Email your librarian or administrator to recommend adding this to your organisation's collection.