We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Precise pose estimation is crucial to various robots. In this paper, we present a localization method using correlative scan matching (CSM) technique for indoor mobile robots equipped with 2D-LiDAR to provide precise and fast pose estimation based on the common occupancy map. A pose tracking module and a global localization module are included in our method. On the one hand, the pose tracking module corrects accumulated odometry errors by CSM in the classical Bayesian filtering framework. A low-pass filter associating the predictive pose from odometer with the corrected pose by CSM is applied to improve precision and smoothness of the pose tracking module. On the other hand, our localization method can autonomously detect localization failures with several designed trigger criteria. Once a localization failure occurs, the global localization module can recover correct robot pose quickly by leveraging branch-and-bound method that can minimize the volume of CSM-evaluated candidates. Our localization method has been validated extensively in simulated, public dataset-based, and real environments. The experimental results reveal that the proposed method achieves high-precision, real-time pose estimation, and quick pose retrieve and outperforms other compared methods.
In this paper, we study the effect of lateral wall vibrations on the excitation and evolution of non-modal perturbations in hypersonic boundary layers subject to low-frequency freestream vortical disturbances (FSVDs). A novel, high-efficiency numerical approach, combining the harmonic weakly nonlinear Navier–Stokes and nonlinear parabolised stability equation approaches, is developed, which is sufficient to accommodate both the rapid distortion of the perturbation in the leading-edge vicinity and the nonlinear development of finite-amplitude high-order harmonics in the downstream region. The boundary-layer response to low-frequency FSVDs shows a longitudinal streaky structure, for which the temperature perturbation shows much greater magnitude than the streamwise velocity perturbation. The lateral vibration induces a Stokes layer solution for the spanwise velocity perturbation, which interacts with the FSVD-induced perturbations and leads to a suppression of the non-modal perturbation and an enhancement of the downstream modal perturbation. The new perturbations excited by the FSVD–vibration interaction strengthen as the vibration intensifies, and they could become comparable with the FSVD-induced perturbations in downstream locations at a high vibration intensity, indicating a remarkable modification of the streaky structure and its instability property. Secondary instability (SI) analyses based on the streaky base flow indicate that the vibration could enhance or suppress the SI modes, depending on their initial phases over the vibration period. Overall, the average effect is that the low-frequency and high-frequency SI modes are stabilised and destabilised by the vibration, respectively. Since the high-frequency SI modes undergo higher amplifications, the subsequent bypass transition is likely to be promoted by relatively strong vibrations.
The influence of the SNP rs174575 (C/G) within the fatty acid desaturase 2 gene on the levels of long-chain PUFA was determined through statistical meta-analysis. Six databases were searched to retrieve the relevant literature. Original data were analysed using Stata 17·0, encompassing summary statistics, tests for heterogeneity, assessment of publication bias, subgroup analysis and sensitivity analysis. A total of ten studies were identified and grouped into twelve trials. Our results showed that individuals who carried the minor G allele of rs174575 had significantly higher dihomo-γ-linolenic acid levels (P = 0·005) and lower arachidonic acid levels (P = 0·033) than individuals who were homozygous for the major allele. The subgroup analysis revealed that the G-allele carriers of rs174575 were significantly positively correlated with linoleic acid (P = 0·002) and dihomo-γ-linolenic acid (P < 0·001) and negatively correlated with arachidonic acid (P = 0·004) in the European populations group. This particular SNP showed a potential association with higher concentrations of dihomo-γ-linolenic acid (P = 0·050) and lower concentrations of arachidonic acid (P = 0·030) within the breast milk group. This meta-analysis has been registered in the PROSPERO database (ID: CRD42023470562).
Soft drink consumption has become a highly controversial public health issue. Given the pattern of consumption in China, sugar-sweetened beverage is the main type of soft drink consumed. Due to containing high levels of fructose, a soft drink may have a deleterious effect on handgrip strength (HGS) due to oxidative stress, inflammation and insulin resistance. However, few studies show an association between soft drink consumption and HGS in adults. We aimed to investigate the association between soft drink consumption and longitudinal changes in HGS among a Chinese adult population. A longitudinal population-based cohort study (5-year follow-up, median: 3·66 years) was conducted in Tianjin, China. A total of 11 125 participants (56·7 % men) were enrolled. HGS was measured using a handheld digital dynamometer. Soft drink consumption (mainly sugar-containing carbonated beverages) was measured at baseline using a validated FFQ. ANCOVA was used to evaluate the association between soft drink consumption and annual change in HGS or weight-adjusted HGS. After adjusting for multiple confounding factors, the least square means (95 % CI) of annual change in HGS across soft drink consumption frequencies were −0·70 (–2·49, 1·09) for rarely drinks, −0·82 (–2·62, 0·97) for < 1 cup/week and −0·86 (–2·66, 0·93) for ≥ 1 cup/week (Pfor trend < 0·05). Likewise, a similar association was observed between soft drink consumption and annual change in weight-adjusted HGS. The results indicate that higher soft drink consumption was associated with faster HGS decline in Chinese adults.
To meet the demands of laser-ion acceleration at a high repetition rate, we have developed a comprehensive diagnostic system for real-time and in situ monitoring of liquid sheet targets (LSTs). The spatially resolved rapid characterizations of an LST’s thickness, flatness, tilt angle and position are fulfilled by different subsystems with high accuracy. With the help of the diagnostic system, we reveal the dependence of thickness distribution on collision parameters and report the 238-nm liquid sheet generated by the collision of two liquid jets. Control methods for the flatness and tilt angle of LSTs have also been provided, which are essential for applications of laser-driven ion acceleration and others.
Physically compliant actuator brings significant benefits to robots in terms of environmental adaptability, human–robot interaction, and energy efficiency as the introduction of the inherent compliance. However, this inherent compliance also limits the force and position control performance of the actuator system due to the induced oscillations and decreased mechanical bandwidth. To solve this problem, we first investigate the dynamic effects of implementing variable physical damping into a compliant actuator. Following this, we propose a structural scheme that integrates a variable damping element in parallel to a conventional series elastic actuator. A damping regulation algorithm is then developed for the parallel spring-damping actuator (PSDA) to tune the dynamic performance of the system while remaining sufficient compliance. Experimental results show that the PSDA offers better stability and dynamic capability in the force and position control by generating appropriate damping levels.
Plumbogaidonnayite, ideally PbZrSi3O9⋅2H2O, is a new gaidonnayite-group mineral discovered as a secondary product derived from the alteration of eudialyte from the Saima alkaline complex, China. It occurs as aggregates (up to 1 mm) composed of subhedral to anhedral or platy crystals (individually 5–50 μm), associated closely with microcline, natrolite, aegirine, gaidonnayite, georgechaoite, zircon, bobtraillite and britholite-(Ce) in eudialyte pseudomorphs. The crystals are transparent, colourless or light brown with a vitreous lustre. Plumbogaidonnayite is brittle with conchoidal fracture, and it has a Mohs hardness of ~5 and a calculated density of 3.264 g/cm3. It is optically biaxial (+) with α = 1.61(3), β = 1.63(3) and γ = 1.66(4). The calculated 2V is 80°, with the optical orientations X, Y and Z parallel to the crystallographic a, b and c axes, respectively. The empirical formula is (Pb0.70Ca0.17Ba0.01K0.11Na0.01Y0.01)Σ1.01(Zr1.00Hf0.01Ti0.01)Σ1.02Si3.01O9⋅2H2O calculated on the basis of nine oxygen atoms per formula unit and assuming the occurrence of two H2O groups. Plumbogaidonnayite is orthorhombic, P21nb, a = 11.7690(4) Å, b = 12.9867(3) Å, c = 6.66165(16) Å, V = 1018.17(5) Å3 and Z = 4. The nine strongest lines of its powder XRD pattern [d in Å (I, %) (hkl)] are: 6.489 (36) (020), 5.803 (100) (101), 4.661 (27) (021), 4.336 (29) (121), 3.640 (30) (221), 3.114 (79) (112), 2.947 (27) (400), 2.622 (27) (241) and 2.493 (27) (312). Plumbogaidonnayite has a similar spiral chain framework structure with gaidonnayite and georgechaoite, which is composed of SiO4 tetrahedra and ZrO6 octahedra, but with disordered extra-framework sites (cations and H2O groups) characterised by the substitution of 2Na+ (K+)→Pb2+ (Ca2+) + □ (vacancy). The discovery of plumbogaidonnayite adds a new perspective on the cation ordering and heterovalent substitution mechanism in gaidonnayite-group minerals.
Many types of oxidative pollutants are dangerous chemicals and may pose a health risk, but an inexpensive and effective method for mitigating those risks would offer significant advantages. The objective of this study was, therefore, to investigate the potential for Fe-pillared montmorillonite to fill that gap. Surface mediated reduction reactions by ferrous species often play an important role in governing the transport, transformation, and fate of hazardous oxidative contaminants. Compared to the untreated montmorillonite (Mnt), the synthetic polyhydroxyl-Fe pillared montmorillonite (Fe-Mnt) was found to be somewhat similar to goethite in promoting the ability of specifically adsorbed Fe(II) to reductively transform 2-nitrophenol (2-NP). The 2-NP was efficiently removed within 30 min from solutions at the optimum neutral pH in a mixed reduction system of Fe(II)/Fe-Mnt under an anoxic atmosphere. This demonstrated that the specifically adsorbed Fe(II) of Fe-Mnt can enhance 2-NP reduction. The highly enhanced 2-NP reduction by Fe(II) through Fe-Mnt surface catalysis can, therefore, be ascribed to clearly increased amounts of an adsorbed Fe(II) species surface complex, which gave rise to enhanced Fe(II) reductive activity that enabled the rapid reduction of 2-NP. The reduction processes produced a faster transformation of 2-NP in a Fe-Mnt suspension than in a Mnt suspension. The transformation kinetics were described using pseudo-first-order rate equations. Moreover, in addition to the effects of mineral surface properties, the interactions were affected by the aqueous chemistry, and the removal rates of 2-NP were increased at pHs of 6.0–7.3. In the present study, the structure and surface reactivity of Fe-Mnt was characterized in depth. The polyhydroxyl-Fe added to Mnt and the pH were determined to be the two key controlling factors to mediate the reductive transformation of 2-NP in the presence of Fe-Mnt in comparison to goethite and Mnt. Finally, the catalysis mechanism responsible for the enhanced 2-NP reduction by Fe(II) was elucidated using cyclic voltammetry.
A compact high-power ultra-wideband bipolar pulse generator based on a modified Marx circuit is designed, which is mainly composed of a primary power supply, Marx generator, sharpening and cutoff subnanosecond spark gap switches, and coaxial transmission lines. The Marx generator with modified circuit structure has thirty-two stages and is composed of eight disk-like modules. Each module consists of four capacitors, two spark gap switches, four charging inductors, and a mechanical support. To simplify the design of the charging structure and reduce the number of switches, four groups of inductors are used to charge the capacitors of the Marx generator, two of which are used for positive voltage charging and the other two for negative voltage charging. When the capacitor of each stage is charged to 35 kV, the maximum output peak voltage can reach 1 MV when the Marx generator is open circuit. The high-voltage pulse generated by the Marx generator charges the transmission line and forms a bipolar pulse through sharpening and cutoff switches. All transmission lines used for bipolar pulse generation have an impedance of 10 Ω. When the 950 kV pulse voltage generated by the Marx generator is fed into the transmission line, the bipolar pulse peak voltage can reach 390 kV, the center frequency of the pulse is about 400 MHz, and the output peak power is about 15.2 GW.
The scaling and mechanism of the propagation speed of turbulent fronts in pipe flow with the Reynolds number has been a long-standing problem in the past decades. Here, we derive an explicit scaling law for the upstream front speed, which approaches a power-law scaling at high Reynolds numbers, and we explain the underlying mechanism. Our data show that the average wall distance of low-speed streaks at the tip of the upstream front, where transition occurs, appears to be constant in local wall units in the wide bulk-Reynolds-number range investigated, between 5000 and 60 000. By further assuming that the axial propagation of velocity fluctuations at the front tip, resulting from streak instabilities, is dominated by the advection of the local mean flow, the front speed can be derived as an explicit function of the Reynolds number. The derived formula agrees well with the speed measured by front tracking. Our finding reveals a relationship between the structure and speed of a front, which enables a close approximation to be obtained of the front speed based on a single velocity field without having to track the front over time.
Cognitive training is a non-pharmacological intervention aimed at improving cognitive function across a single or multiple domains. Although the underlying mechanisms of cognitive training and transfer effects are not well-characterized, cognitive training has been thought to facilitate neural plasticity to enhance cognitive performance. Indeed, the Scaffolding Theory of Aging and Cognition (STAC) proposes that cognitive training may enhance the ability to engage in compensatory scaffolding to meet task demands and maintain cognitive performance. We therefore evaluated the effects of cognitive training on working memory performance in older adults without dementia. This study will help begin to elucidate non-pharmacological intervention effects on compensatory scaffolding in older adults.
Participants and Methods:
48 participants were recruited for a Phase III randomized clinical trial (Augmenting Cognitive Training in Older Adults [ACT]; NIH R01AG054077) conducted at the University of Florida and University of Arizona. Participants across sites were randomly assigned to complete cognitive training (n=25) or an education training control condition (n=23). Cognitive training and the education training control condition were each completed during 60 sessions over 12 weeks for 40 hours total. The education training control condition involved viewing educational videos produced by the National Geographic Channel. Cognitive training was completed using the Posit Science Brain HQ training program, which included 8 cognitive training paradigms targeting attention/processing speed and working memory. All participants also completed demographic questionnaires, cognitive testing, and an fMRI 2-back task at baseline and at 12-weeks following cognitive training.
Results:
Repeated measures analysis of covariance (ANCOVA), adjusted for training adherence, transcranial direct current stimulation (tDCS) condition, age, sex, years of education, and Wechsler Test of Adult Reading (WTAR) raw score, revealed a significant 2-back by training group interaction (F[1,40]=6.201, p=.017, η2=.134). Examination of simple main effects revealed baseline differences in 2-back performance (F[1,40]=.568, p=.455, η2=.014). After controlling for baseline performance, training group differences in 2-back performance was no longer statistically significant (F[1,40]=1.382, p=.247, η2=.034).
Conclusions:
After adjusting for baseline performance differences, there were no significant training group differences in 2-back performance, suggesting that the randomization was not sufficient to ensure adequate distribution of participants across groups. Results may indicate that cognitive training alone is not sufficient for significant improvement in working memory performance on a near transfer task. Additional improvement may occur with the next phase of this clinical trial, such that tDCS augments the effects of cognitive training and results in enhanced compensatory scaffolding even within this high performing cohort. Limitations of the study include a highly educated sample with higher literacy levels and the small sample size was not powered for transfer effects analysis. Future analyses will include evaluation of the combined intervention effects of a cognitive training and tDCS on nback performance in a larger sample of older adults without dementia.
Cognitive training has shown promise for improving cognition in older adults. Aging involves a variety of neuroanatomical changes that may affect response to cognitive training. White matter hyperintensities (WMH) are one common age-related brain change, as evidenced by T2-weighted and Fluid Attenuated Inversion Recovery (FLAIR) MRI. WMH are associated with older age, suggestive of cerebral small vessel disease, and reflect decreased white matter integrity. Higher WMH load associates with reduced threshold for clinical expression of cognitive impairment and dementia. The effects of WMH on response to cognitive training interventions are relatively unknown. The current study assessed (a) proximal cognitive training performance following a 3-month randomized control trial and (b) the contribution of baseline whole-brain WMH load, defined as total lesion volume (TLV), on pre-post proximal training change.
Participants and Methods:
Sixty-two healthy older adults ages 65-84 completed either adaptive cognitive training (CT; n=31) or educational training control (ET; n=31) interventions. Participants assigned to CT completed 20 hours of attention/processing speed training and 20 hours of working memory training delivered through commercially-available Posit Science BrainHQ. ET participants completed 40 hours of educational videos. All participants also underwent sham or active transcranial direct current stimulation (tDCS) as an adjunctive intervention, although not a variable of interest in the current study. Multimodal MRI scans were acquired during the baseline visit. T1- and T2-weighted FLAIR images were processed using the Lesion Segmentation Tool (LST) for SPM12. The Lesion Prediction Algorithm of LST automatically segmented brain tissue and calculated lesion maps. A lesion threshold of 0.30 was applied to calculate TLV. A log transformation was applied to TLV to normalize the distribution of WMH. Repeated-measures analysis of covariance (RM-ANCOVA) assessed pre/post change in proximal composite (Total Training Composite) and sub-composite (Processing Speed Training Composite, Working Memory Training Composite) measures in the CT group compared to their ET counterparts, controlling for age, sex, years of education and tDCS group. Linear regression assessed the effect of TLV on post-intervention proximal composite and sub-composite, controlling for baseline performance, intervention assignment, age, sex, years of education, multisite scanner differences, estimated total intracranial volume, and binarized cardiovascular disease risk.
Results:
RM-ANCOVA revealed two-way group*time interactions such that those assigned cognitive training demonstrated greater improvement on proximal composite (Total Training Composite) and sub-composite (Processing Speed Training Composite, Working Memory Training Composite) measures compared to their ET counterparts. Multiple linear regression showed higher baseline TLV associated with lower pre-post change on Processing Speed Training sub-composite (ß = -0.19, p = 0.04) but not other composite measures.
Conclusions:
These findings demonstrate the utility of cognitive training for improving postintervention proximal performance in older adults. Additionally, pre-post proximal processing speed training change appear to be particularly sensitive to white matter hyperintensity load versus working memory training change. These data suggest that TLV may serve as an important factor for consideration when planning processing speed-based cognitive training interventions for remediation of cognitive decline in older adults.
Interventions using a cognitive training paradigm called the Useful Field of View (UFOV) task have shown to be efficacious in slowing cognitive decline. However, no studies have looked at the engagement of functional networks during UFOV task completion. The current study aimed to (a) assess if regions activated during the UFOV fMRI task were functionally connected and related to task performance (henceforth called the UFOV network), (b) compare connectivity of the UFOV network to 7 resting-state functional connectivity networks in predicting proximal (UFOV) and near-transfer (Double Decision) performance, and (c) explore the impact of network segregation between higher-order networks and UFOV performance.
Participants and Methods:
336 healthy older adults (mean age=71.6) completed the UFOV fMRI task in a Siemens 3T scanner. UFOV fMRI accuracy was calculated as the number of correct responses divided by 56 total trials. Double Decision performance was calculated as the average presentation time of correct responses in log ms, with lower scores equating to better processing speed. Structural and functional MRI images were processed using the default pre-processing pipeline within the CONN toolbox. The Artifact Rejection Toolbox was set at a motion threshold of 0.9mm and participants were excluded if more than 50% of volumes were flagged as outliers. To assess connectivity of regions associated with the UFOV task, we created 10 spherical regions of interest (ROIs) a priori using the WFU PickAtlas in SPM12. These include the bilateral pars triangularis, supplementary motor area, and inferior temporal gyri, as well as the left pars opercularis, left middle occipital gyrus, right precentral gyrus and right superior parietal lobule. We used a weighted ROI-to-ROI connectivity analysis to model task-based within-network functional connectivity of the UFOV network, and its relationship to UFOV accuracy. We then used weighted ROI-to-ROI connectivity analysis to compare the efficacy of the UFOV network versus 7 resting-state networks in predicting UFOV fMRI task performance and Double Decision performance. Finally, we calculated network segregation among higher order resting state networks to assess its relationship with UFOV accuracy. All functional connectivity analyses were corrected at a false discovery threshold (FDR) at p<0.05.
Results:
ROI-to-ROI analysis showed significant within-network functional connectivity among the 10 a priori ROIs (UFOV network) during task completion (all pFDR<.05). After controlling for covariates, greater within-network connectivity of the UFOV network associated with better UFOV fMRI performance (pFDR=.008). Regarding the 7 resting-state networks, greater within-network connectivity of the CON (pFDR<.001) and FPCN (pFDR=. 014) were associated with higher accuracy on the UFOV fMRI task. Furthermore, greater within-network connectivity of only the UFOV network associated with performance on the Double Decision task (pFDR=.034). Finally, we assessed the relationship between higher-order network segregation and UFOV accuracy. After controlling for covariates, no significant relationships between network segregation and UFOV performance remained (all p-uncorrected>0.05).
Conclusions:
To date, this is the first study to assess task-based functional connectivity during completion of the UFOV task. We observed that coherence within 10 a priori ROIs significantly predicted UFOV performance. Additionally, enhanced within-network connectivity of the UFOV network predicted better performance on the Double Decision task, while conventional resting-state networks did not. These findings provide potential targets to optimize efficacy of UFOV interventions.
Cognitive training using a visual speed-of-processing task, called the Useful Field of View (UFOV) task, reduced dementia risk and reduced decline in activities of daily living at a 10-year follow-up in older adults. However, there is variability in the level of cognitive gains after cognitive training across studies. One potential explanation for this variability could be moderating factors. Prior studies suggest variables moderating cognitive training gains share features of the training task. Learning trials of the Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) recruit similar cognitive abilities and have overlapping neural correlates with the UFOV task and speed-ofprocessing/working memory tasks and therefore could serve as potential moderators. Exploring moderating factors of cognitive training gains may boost the efficacy of interventions, improve rigor in the cognitive training literature, and eventually help provide tailored treatment recommendations. This study explored the association between the HVLT-R and BVMT-R learning and the UFOV task, and assessed the moderation of HVLT-R and BVMT-R learning on UFOV improvement after a 3-month speed-ofprocessing/attention and working memory cognitive training intervention in cognitively healthy older adults.
Participants and Methods:
75 healthy older adults (M age = 71.11, SD = 4.61) were recruited as part of a larger clinical trial through the Universities of Florida and Arizona. Participants were randomized into a cognitive training (n=36) or education control (n=39) group and underwent a 40-hour, 12-week intervention. Cognitive training intervention consisted of practicing 4 attention/speed-of-processing (including the UFOV task) and 4 working memory tasks. Education control intervention consisted of watching 40-minute educational videos. The HVLT-R and BVMT-R were administered at the pre-intervention timepoint as part of a larger neurocognitive battery. The learning ratio was calculated as: trial 3 total - trial 1 total/12 - trial 1 total. UFOV performance was measured at pre- and post-intervention time points via the POSIT Brain HQ Double Decision Assessment. Multiple linear regressions predicted baseline Double Decision performance from HVLT-R and BVMT-R learning ratios controlling for study site, age, sex, and education. A repeated measures moderation analysis assessed the moderation of HVLT-R and BVMT-R learning ratio on Double Decision change from pre- to post-intervention for cognitive training and education control groups.
Results:
Baseline Double Decision performance significantly associated with BVMT-R learning ratio (β=-.303, p=.008), but not HVLT-R learning ratio (β=-.142, p=.238). BVMT-R learning ratio moderated gains in Double Decision performance (p<.01); for each unit increase in BVMT-R learning ratio, there was a .6173 unit decrease in training gains. The HVLT-R learning ratio did not moderate gains in Double Decision performance (p>.05). There were no significant moderations in the education control group.
Conclusions:
Better visuospatial learning was associated with faster Double Decision performance at baseline. Those with poorer visuospatial learning improved most on the Double Decision task after training, suggesting that healthy older adults who perform below expectations may show the greatest training gains. Future cognitive training research studying visual speed-of-processing interventions should account for differing levels of visuospatial learning at baseline, as this could impact the magnitude of training outcomes.
Aging is associated with disruptions in functional connectivity within the default mode (DMN), frontoparietal control (FPCN), and cingulo-opercular (CON) resting-state networks. Greater within-network connectivity predicts better cognitive performance in older adults. Therefore, strengthening network connectivity, through targeted intervention strategies, may help prevent age-related cognitive decline or progression to dementia. Small studies have demonstrated synergistic effects of combining transcranial direct current stimulation (tDCS) and cognitive training (CT) on strengthening network connectivity; however, this association has yet to be rigorously tested on a large scale. The current study leverages longitudinal data from the first-ever Phase III clinical trial for tDCS to examine the efficacy of an adjunctive tDCS and CT intervention on modulating network connectivity in older adults.
Participants and Methods:
This sample included 209 older adults (mean age = 71.6) from the Augmenting Cognitive Training in Older Adults multisite trial. Participants completed 40 hours of CT over 12 weeks, which included 8 attention, processing speed, and working memory tasks. Participants were randomized into active or sham stimulation groups, and tDCS was administered during CT daily for two weeks then weekly for 10 weeks. For both stimulation groups, two electrodes in saline-soaked 5x7 cm2 sponges were placed at F3 (cathode) and F4 (anode) using the 10-20 measurement system. The active group received 2mA of current for 20 minutes. The sham group received 2mA for 30 seconds, then no current for the remaining 20 minutes.
Participants underwent resting-state fMRI at baseline and post-intervention. CONN toolbox was used to preprocess imaging data and conduct region of interest (ROI-ROI) connectivity analyses. The Artifact Detection Toolbox, using intermediate settings, identified outlier volumes. Two participants were excluded for having greater than 50% of volumes flagged as outliers. ROI-ROI analyses modeled the interaction between tDCS group (active versus sham) and occasion (baseline connectivity versus postintervention connectivity) for the DMN, FPCN, and CON controlling for age, sex, education, site, and adherence.
Results:
Compared to sham, the active group demonstrated ROI-ROI increases in functional connectivity within the DMN following intervention (left temporal to right temporal [T(202) = 2.78, pFDR < 0.05] and left temporal to right dorsal medial prefrontal cortex [T(202) = 2.74, pFDR < 0.05]. In contrast, compared to sham, the active group demonstrated ROI-ROI decreases in functional connectivity within the FPCN following intervention (left dorsal prefrontal cortex to left temporal [T(202) = -2.96, pFDR < 0.05] and left dorsal prefrontal cortex to left lateral prefrontal cortex [T(202) = -2.77, pFDR < 0.05]). There were no significant interactions detected for CON regions.
Conclusions:
These findings (a) demonstrate the feasibility of modulating network connectivity using tDCS and CT and (b) provide important information regarding the pattern of connectivity changes occurring at these intervention parameters in older adults. Importantly, the active stimulation group showed increases in connectivity within the DMN (a network particularly vulnerable to aging and implicated in Alzheimer’s disease) but decreases in connectivity between left frontal and temporal FPCN regions. Future analyses from this trial will evaluate the association between these changes in connectivity and cognitive performance post-intervention and at a one-year timepoint.
The National Institutes of Health-Toolbox cognition battery (NIH-TCB) is widely used in cognitive aging studies and includes measures in cognitive domains evaluated for dimensional structure and psychometric properties in prior research. The present study addresses a current literature gap by demonstrating how NIH-TCB integrates into a battery of traditional clinical neuropsychological measures. The dimensional structure of NIH-TCB measures along with conventional neuropsychological tests is assessed in healthy older adults.
Participants and Methods:
Baseline cognitive data were obtained from 327 older adults. The following measures were collected: NIH-Toolbox cognitive battery, Controlled Oral Word Association (COWA) letter and animals tests, Wechsler Test of Adult Reading (WTAR), Stroop Color-Word Interference Test, Paced Auditory Serial Addition Test (PASAT), Brief Visuospatial Memory Test (BVMT), Letter-Number Sequencing (LNS), Hopkins Verbal Learning Test (HVLT), Trail Making Test A&B, Digit Span. Hmisc, psych, and GPARotation packages for R were used to conduct exploratory factor analyses (EFA). A 5-factor solution was conducted followed by a 6-factor solution. Promax rotation was used for both EFA models.
Results:
The 6-factor EFA solution is reported here. Results indicated the following 6 factors: working memory (Digit Span forward, backward, and sequencing, PASAT trials 1 and 2, NIH-Toolbox List Sorting, LNS), speed/executive function (Stroop color naming, word reading, and color-word interference, NIH-Toolbox Flanker, Dimensional Change, and Pattern Comparison, Trail Making Test A&B), verbal fluency (COWA letters F-A-S), crystallized intelligence (WTAR, NIH-Toolbox Oral Recognition and Picture Vocabulary), visual memory (BVMT immediate and delayed), and verbal memory (HVLT immediate and delayed. COWA animals and NIH-Toolbox Picture Sequencing did not adequately load onto any EFA factor and were excluded from the subsequent CFA.
Conclusions:
Findings indicate that in a sample of healthy older adults, these collected measures and those obtained through the NIH-Toolbox battery represent 6 domains of cognitive function. Results suggest that in this sample, picture sequencing and COWA animals did not load adequately onto the factors created from the rest of the measures collected. These findings should assist in interpreting future research using combined NIH-TCB and neuropsychological batteries to assess cognition in healthy older adults.
Nonpathological aging has been linked to decline in both verbal and visuospatial memory abilities in older adults. Disruptions in resting-state functional connectivity within well-characterized, higherorder cognitive brain networks have also been coupled with poorer memory functioning in healthy older adults and in older adults with dementia. However, there is a paucity of research on the association between higherorder functional connectivity and verbal and visuospatial memory performance in the older adult population. The current study examines the association between resting-state functional connectivity within the cingulo-opercular network (CON), frontoparietal control network (FPCN), and default mode network (DMN) and verbal and visuospatial learning and memory in a large sample of healthy older adults. We hypothesized that greater within-network CON and FPCN functional connectivity would be associated with better immediate verbal and visuospatial memory recall. Additionally, we predicted that within-network DMN functional connectivity would be associated with improvements in delayed verbal and visuospatial memory recall. This study helps to glean insight into whether within-network CON, FPCN, or DMN functional connectivity is associated with verbal and visuospatial memory abilities in later life.
Participants and Methods:
330 healthy older adults between 65 and 89 years old (mean age = 71.6 ± 5.2) were recruited at the University of Florida (n = 222) and the University of Arizona (n = 108). Participants underwent resting-state fMRI and completed verbal memory (Hopkins Verbal Learning Test - Revised [HVLT-R]) and visuospatial memory (Brief Visuospatial Memory Test - Revised [BVMT-R]) measures. Immediate (total) and delayed recall scores on the HVLT-R and BVMT-R were calculated using each test manual’s scoring criteria. Learning ratios on the HVLT-R and BVMT-R were quantified by dividing the number of stimuli (verbal or visuospatial) learned between the first and third trials by the number of stimuli not recalled after the first learning trial. CONN Toolbox was used to extract average within-network connectivity values for CON, FPCN, and DMN. Hierarchical regressions were conducted, controlling for sex, race, ethnicity, years of education, number of invalid scans, and scanner site.
Results:
Greater CON connectivity was significantly associated with better HVLT-R immediate (total) recall (ß = 0.16, p = 0.01), HVLT-R learning ratio (ß = 0.16, p = 0.01), BVMT-R immediate (total) recall (ß = 0.14, p = 0.02), and BVMT-R delayed recall performance (ß = 0.15, p = 0.01). Greater FPCN connectivity was associated with better BVMT-R learning ratio (ß = 0.13, p = 0.04). HVLT-R delayed recall performance was not associated with connectivity in any network, and DMN connectivity was not significantly related to any measure.
Conclusions:
Connectivity within CON demonstrated a robust relationship with different components of memory function as well across verbal and visuospatial domains. In contrast, FPCN only evidenced a relationship with visuospatial learning, and DMN was not significantly associated with memory measures. These data suggest that CON may be a valuable target in longitudinal studies of age-related memory changes, but also a possible target in future non-invasive interventions to attenuate memory decline in older adults.
The Jinying gold deposit is located in southern Jilin Province in northeast China and is representative of the large Early Cretaceous gold deposits in this area. To better understand ore genesis of this deposit, a multi-isotope integrated analysis of U–Pb–Rb–Sr–He–Ar–S has been carried out. Laser ablation inductively coupled plasma–mass spectrometry (LA–ICP–MS) dating of zircons from the granodiorite porphyry and dioritic porphyrite in the study area yields ages of 172.1 ± 1.2 Ma and 122.5 ± 0.8 Ma, suggesting that corresponding intrusion occurred in the Middle Jurassic and the Early Cretaceous. Rb–Sr dating of the pyrite yields an isochron age of 120 ± 3 Ma, suggesting that gold mineralization occurred in the Early Cretaceous. The fluid inclusions in pyrite yield 3He/4He ratios clustered within a small range from 0.08 to 0.13 Ra, 40Ar/36Ar ratios between 331.6 and 351.3, and mantle He in the range of 1.0–1.6%, indicating that the ore-forming fluids originated from a mixed crustal and mantle source. The in situ S isotopic values of pyrite vary between + 0.1 ‰ and + 2.8 ‰, suggesting that the ore-related sulphur came from the deep magmatic source. Combined with the geological history of the study area, it can be concluded that the gold mineralization was possibly related to the extensional setting associated with the rollback of the Palaeo-Pacific Plate.
Real-time gait trajectory planning is challenging for legged robots walking on unknown terrain. In this paper, to realize a more efficient and faster motion control of a quadrupedal robot, we propose an optimized gait planning generator (GPG) based on the decision tree (DT) and random forest (RF) model of the robot leg workspace. First, the framework of this embedded GPG and some of the modules associated with it are illustrated. Aiming at the leg workspace model described by DT and RF used in GPG, this paper introduces in detail how to collect the original data needed for training the model and puts forward an Interpolation Labeling with Dilation and Erosion (ILDE) data processing algorithm. After the DT and RF models are trained, we preliminarily evaluate their performance. We then present how these models can be used to predict the location relation between a spatial point and the leg workspace based on its distributional features. The DT model takes only 0.00011 s to process a sample, while the RF model can give the prediction probability. As a complement, the PID inverse kinematic model used in GPG is also mentioned. Finally, the optimized GPG is tested during a real-time single-leg trajectory planning experiment and an unknown terrain recognition simulation of a virtual quadrupedal robot. According to the test results, the GPG shows a remarkable rapidity for processing large-scale data in the gait trajectory planning tasks, and the results can prove it has an application value for quadruped robot control.
Optical microscopy is the gold standard technique used to confirm the diagnosis of scabies. Multiple diagnostic features of the pathogen Sarcoptes scabiei var. hominis (S. scabiei) can be identified under a microscope and classified into 3 categories: mites, eggs and fecal pellets. However, mite and eggshell fragments can also be observed, which have been ignored in the 2020 International Alliance for the Control of Scabies (IACS) Criteria and by most researchers. In this study, we propose a novel morphological classification method that classifies multiple diagnostic features into 5 categories and 7 subcategories. Our results revealed that 65.2% (1893 of 2896) of the positive cases were confirmed through the identification of mites, eggs or fecal pellets, whereas up to 34.6% (1003 of 2896) of the positive cases were confirmed through the identification of mite or eggshell fragments. Therefore, the important diagnostic values of mite and eggshell fragments should be emphasized. Importantly, for the first time, mite and eggshell fragments were classified into 7 subcategories, some of which are easily ignored or confused with contaminating artefacts. We believe that this novel morphological classification method will be beneficial for operator training in interpreting slides and in improving the 2020 IACS Criteria.