We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with
$\sim$
15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination
$+41^\circ$
made over a 288-MHz band centred at 887.5 MHz.
The present study concerns a temporally developing parallel natural convection boundary layer with Prandtl number
$\textit {Pr} = 0.71$
over an isothermally heated vertical plate. Three-dimensional direct numerical simulations (DNS) with different initial conditions were carried out to investigate the turbulent statistical profiles of mean velocity and temperature up to
${\textit {Gr}}_\delta =7.7\times 10^7$
, where
$Gr_\delta$
is the Grashof number based on the boundary layer thickness
$\delta$
. By virtue of DNS, we have identified a constant heat flux layer (George & Capp, Intl J. Heat Mass Transfer, vol. 22, issue 6, 1979, pp. 813–826; Hölling & Herwig, J. Fluid Mech., vol. 541, 2005, pp. 383–397) and a constant forcing layer in the near-wall region. In the close vicinity of the wall (
$y^+<5$
) a laminar-like sublayer has developed, and the temperature profile follows the linear relation, consistent with the studies of spatially developing flows (Tsuji & Nagano, Intl J. Heat Mass Transfer, vol. 31, issue 8, 1988, pp. 1723–1734); whereas such a linear relation cannot be observed for the velocity profile due to the extra buoyancy. Similar to earlier studies (Ng et al., J. Fluid Mech., vol. 825, 2017, pp. 550–572) we show that this buoyancy effect would asymptotically become zero if the
${\textit {Gr}}_\delta$
is sufficiently large. Further away from the wall (
$y^+>50$
), there is a log-law region for the mean temperature profile as reported by Tsuji & Nagano (1988). In this region, the turbulent length scale which characterises mixing scales linearly with the distance from the wall once
${\textit {Gr}}_\delta$
is sufficiently large. By taking the varying buoyancy into consideration with the robust mixing length model, a modified log-law for the mean velocity profile for
$y^+>50$
is proposed. The effect of the initialization is shown to persist until relatively high
${\textit {Gr}}_\delta$
as a result of slow adjustment of the buoyancy (temperature) profile. Once these differences are accounted for, we find excellent agreement with our two DNS cases and with the spatially developing data of Tsuji & Nagano (1988). In the limit of higher
${\textit {Gr}}_\delta$
the velocity profile is expected to become asymptotic to momentum-dominated behaviour as buoyancy becomes increasingly weak in comparison with shear in the near-wall region.
We present a detailed analysis of the radio galaxy PKS
$2250{-}351$
, a giant of 1.2 Mpc projected size, its host galaxy, and its environment. We use radio data from the Murchison Widefield Array, the upgraded Giant Metre-wavelength Radio Telescope, the Australian Square Kilometre Array Pathfinder, and the Australia Telescope Compact Array to model the jet power and age. Optical and IR data come from the Galaxy And Mass Assembly (GAMA) survey and provide information on the host galaxy and environment. GAMA spectroscopy confirms that PKS
$2250{-}351$
lies at
$z=0.2115$
in the irregular, and likely unrelaxed, cluster Abell 3936. We find its host is a massive, ‘red and dead’ elliptical galaxy with negligible star formation but with a highly obscured active galactic nucleus dominating the mid-IR emission. Assuming it lies on the local M–
$\sigma$
relation, it has an Eddington accretion rate of
$\lambda_{\rm EDD}\sim 0.014$
. We find that the lobe-derived jet power (a time-averaged measure) is an order of magnitude greater than the hotspot-derived jet power (an instantaneous measure). We propose that over the lifetime of the observed radio emission (
${\sim} 300\,$
Myr), the accretion has switched from an inefficient advection-dominated mode to a thin disc efficient mode, consistent with the decrease in jet power. We also suggest that the asymmetric radio morphology is due to its environment, with the host of PKS
$2250{-}351$
lying to the west of the densest concentration of galaxies in Abell 3936.
Ascarid parasites infect a variety of hosts and regular anthelmintic treatment is recommended for all species. Parascaris spp. is the only ascarid species with widespread anthelmintic resistance, which allows for the study of resistance mechanisms. The purpose of this study was to establish an in vitro drug exposure protocol for adult anthelmintic-naïve Parascaris spp. and report a preliminary transcriptomic analysis in response to drug exposure. Live worms were harvested from foal necropsies and maintained in RPMI-1640 at 37 °C. Serial dilutions of oxibendazole (OBZ) and ivermectin (IVM) were prepared for in vitro drug exposure, and worm viability was monitored over time. In a second drug trial, worms were used for transcriptomic analysis. The final drug concentrations employed were OBZ at 40.1 μm (10 μg mL−1) and IVM at 1.1 μm (1 μg mL−1) for 24 and 3 h, respectively. The RNA-seq analysis revealed numerous differentially expressed genes, with some being potentially related to drug detoxification and regulatory mechanisms. This report provides a method for in vitro drug exposure and the phenotypic responses for Parascaris spp., which could be extrapolated to other ascarid parasites. Finally, it also provides preliminary transcriptomic data following drug exposure as a reference point for future studies of Parascaris spp.
Associations between different forms of malnutrition and environmental conditions, including water, sanitation and hygiene (WASH), may contribute towards persistently poor child health, growth and cognitive development. Experiencing poor nutrition in utero or during early childhood is furthermore associated with chronic diseases later in life. The primary responsibility for provision of water and sanitation, as a basic service and human right, lies with the State; however, a number of stakeholders are involved. The situation is most critical in sub-Saharan Africa (SSA), where, in 2015, 311 million people lacked a safe water source, and >70% of SSA populations were living without adequate sanitation. The aim of this paper was to conduct a systematic review to investigate the state of literature concerned with WASH and its association with nutritional status, and governance in children from birth to 5 years of age in SSA. Articles were sourced from PubMed Central, Science Direct and ProQuest Social Science databases published between 1990 and 2017. The PRISMA Statement was utilised and this systematic review is registered with PROSPERO (CRD42017071700). The search terms returned 15,351 articles for screening, with 46 articles included. This is indicative of a limited body of knowledge; however, the number of publications on this topic has been increasing, suggesting burgeoning field of interest. Targeted research on the governance of WASH through the identification of the various role players and stakeholders at various levels, while understanding the policy environment in relation to particular health-related outcomes is imperative to address the burden of child undernutrition.
The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together
$60+$
programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.
A new era in radio astronomy will begin with the upcoming large-scale surveys planned at the Australian Square Kilometre Array Pathfinder (ASKAP). ASKAP started its Early Science programme in October 2017 and several target fields were observed during the array commissioning phase. The Scorpio field was the first observed in the Galactic Plane in Band 1 (792–1 032 MHz) using 15 commissioned antennas. The achieved sensitivity and large field of view already allow to discover new sources and survey thousands of existing ones with improved precision with respect to previous surveys. Data analysis is currently ongoing to deliver the first source catalogue. Given the increased scale of the data, source extraction and characterisation, even in this Early Science phase, have to be carried out in a mostly automated way. This process presents significant challenges due to the presence of extended objects and diffuse emission close to the Galactic Plane.
In this context, we have extended and optimised a novel source finding tool, named Caesar, to allow extraction of both compact and extended sources from radio maps. A number of developments have been done driven by the analysis of the Scorpio map and in view of the future ASKAP Galactic Plane survey. The main goals are the improvement of algorithm performances and scalability as well as of software maintainability and usability within the radio community. In this paper, we present the current status of Caesar and report a first systematic characterisation of its performance for both compact and extended sources using simulated maps. Future prospects are discussed in the light of the obtained results.
The stability properties of a natural convection boundary layer adjacent to an isothermally heated vertical wall, with Prandtl number 0.71, are numerically investigated in the configuration of a temporally evolving parallel flow. The instantaneous linear stability of the flow is first investigated by solving the eigenvalue problem with a quasi-steady assumption, whereby the unsteady base flow is frozen in time. Temporal responses of the discrete perturbation modes are numerically obtained by solving the two-dimensional linearized disturbance equations using a ‘frozen’ base flow as an initial-value problem at various
$Gr_{\unicode[STIX]{x1D6FF}}$
, where
$Gr_{\unicode[STIX]{x1D6FF}}$
is the Grashof number based on the velocity integral boundary layer thickness
$\unicode[STIX]{x1D6FF}$
. The resultant amplification rates of the discrete modes are compared with the quasi-steady eigenvalue analysis, and both two-dimensional and three-dimensional direct numerical simulations (DNS) of the temporally evolving flow. The amplification rate predicted by the linear theory compares well with the result of direct numerical simulation up to a transition point. The extent of the linear regime where the perturbations linearly interact with the base flow is thus identified. The value of the transition
$Gr_{\unicode[STIX]{x1D6FF}}$
, according to the three-dimensional DNS results, is dependent on the initial perturbation amplitude. Beyond the transition point, the DNS results diverge from the linear stability predictions as nonlinear mechanisms become important.
We have observed the G23 field of the Galaxy AndMass Assembly (GAMA) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) in its commissioning phase to validate the performance of the telescope and to characterise the detected galaxy populations. This observation covers ~48 deg2 with synthesised beam of 32.7 arcsec by 17.8 arcsec at 936MHz, and ~39 deg2 with synthesised beam of 15.8 arcsec by 12.0 arcsec at 1320MHz. At both frequencies, the root-mean-square (r.m.s.) noise is ~0.1 mJy/beam. We combine these radio observations with the GAMA galaxy data, which includes spectroscopy of galaxies that are i-band selected with a magnitude limit of 19.2. Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry is used to determine which galaxies host an active galactic nucleus (AGN). In properties including source counts, mass distributions, and IR versus radio luminosity relation, the ASKAP-detected radio sources behave as expected. Radio galaxies have higher stellar mass and luminosity in IR, optical, and UV than other galaxies. We apply optical and IR AGN diagnostics and find that they disagree for ~30% of the galaxies in our sample. We suggest possible causes for the disagreement. Some cases can be explained by optical extinction of the AGN, but for more than half of the cases we do not find a clear explanation. Radio sources aremore likely (~6%) to have an AGN than radio quiet galaxies (~1%), but the majority of AGN are not detected in radio at this sensitivity.
Carbon-14 (radiocarbon, 14C) is an important radionuclide in the inventory of radioactive waste in many disposal programs due to its significant dose contributions in safety assessments for geological repositories. Activated steels from nuclear reactors are one of the major sources of 14C. Knowledge of 14C release from steel wastes and its chemical form (speciation) is limited giving rise to uncertainty regarding the fate of 14C and a conservative treatment in assessment calculations. In this work, we summarize and make a synthesis of selected results from Work Package 2 of the EU CAST project aiming to improve understanding of 14C release related to steel corrosion under repository-relevant conditions. The outcome of the experiments is discussed in the context of the long-term evolution of a repository and its potential consequences for safety assessment.
Introduction: Safe and efficient handovers between emergency medical services (EMS) practitioners and emergency nurses are vital as poor transitions may lead to loss of information and place patients at risk for adverse events. We conducted a mixed methods systematic review to a) examine factors that disrupt or improve handovers from EMS practitioners to emergency department nurses, and b) investigate the effectiveness of interventional strategies that lead to improvements in communication and fewer adverse events. Methods: We searched electronic databases (DARE, MEDLINE, EMBASE, Cochrane, CINAHL, Joanna Briggs Institute EBP; Communication Abstracts); grey literature (grey literature databases, organization websites, querying experts in emergency medicine); and reference lists of the included studies. Citation tracking was conducted for the included studies. Two reviewers independently screened titles/abstracts and full-texts for inclusion and methodological quality using the Effective Public Health Practice Project Quality Assessment Tool for quantitative studies and the Joanna Briggs Institute Critic Appraisal Checklist for Qualitative Research. Narrative and thematic synthesis were conducted to integrate and explore relationships within the data. Results: Twenty-two studies were included in this review from the 6150 records initially retrieved. Our analysis suggests that qualitative, quantitative, and mixed methods research approaches have been utilized to explore handovers. Studies (n=11) have predominantly explored existing patterns of handovers focusing on barriers and facilitators. Interventions (e.g. multimedia transmission of pre-hospital information, tailored e-learning program) were investigated in five studies. Results suggest that lack of formal handover training, workflow interruptions, workload, and strained working relationships between EMS and nursing are perceived threats to optimal handovers. Conclusion: The findings from this review can inform the development of handover interventions and contribute to a more rigorous approach to researching handovers between EMS practitioners and emergency nurses. Furthermore, there is a need for studies in which specific interventions to optimize handovers are examined.
The tens of millions of radio sources to be detected with next-generation surveys pose new challenges, quite apart from the obvious ones of processing speed and data volumes. For example, existing algorithms are inadequate for source extraction or cross-matching radio and optical/IR sources, and a new generation of algorithms are needed using machine learning and other techniques. The large numbers of sources enable new ways of testing astrophysical models, using a variety of “large-n astronomy” techniques such as statistical redshifts. Furthermore, while unexpected discoveries account for some of the most significant discoveries in astronomy, it will be difficult to discover the unexpected in large volumes of data, unless specific software is developed to mine the data for the unexpected.
We describe the performance of the Boolardy Engineering Test Array, the prototype for the Australian Square Kilometre Array Pathfinder telescope. Boolardy Engineering Test Array is the first aperture synthesis radio telescope to use phased array feed technology, giving it the ability to electronically form up to nine dual-polarisation beams. We report the methods developed for forming and measuring the beams, and the adaptations that have been made to the traditional calibration and imaging procedures in order to allow BETA to function as a multi-beam aperture synthesis telescope. We describe the commissioning of the instrument and present details of Boolardy Engineering Test Array’s performance: sensitivity, beam characteristics, polarimetric properties, and image quality. We summarise the astronomical science that it has produced and draw lessons from operating Boolardy Engineering Test Array that will be relevant to the commissioning and operation of the final Australian Square Kilometre Array Path telescope.
Our knowledge of the universe comes from recording the photon and particle fluxes incident on the Earth from space. We thus require sensitive measurement across the entire energy spectrum, using large telescopes with efficient instrumentation located on superb sites. Technological advances and engineering constraints are nearing the point where we are recording as many photons arriving at a site as is possible. Major advances in the future will come from improving the quality of the site. The ultimate site is, of course, beyond the Earth’s atmosphere, such as on the Moon, but economic limitations prevent our exploiting this avenue to the degree that the scientific community desires. Here we describe an alternative, which offers many of the advantages of space for a fraction of the cost: the Antarctic Plateau.
During 1990 we surveyed the southern sky using a multi-beam receiver at frequencies of 4850 and 843 MHz. The half-power beamwidths were 4 and 25 arcmin respectively. The finished surveys cover the declination range between +10 and −90 degrees declination, essentially complete in right ascension, an area of 7.30 steradians. Preliminary analysis of the 4850 MHz data indicates that we will achieve a five sigma flux density limit of about 30 mJy. We estimate that we will find between 80 000 and 90 000 new sources above this limit. This is a revised version of the paper presented at the Regional Meeting by the first four authors; the surveys now have been completed.
Africa is experiencing a rapid increase in adult obesity and associated cardiometabolic diseases (CMDs). The H3Africa AWI-Gen Collaborative Centre was established to examine genomic and environmental factors that influence body composition, body fat distribution and CMD risk, with the aim to provide insights towards effective treatment and intervention strategies. It provides a research platform of over 10 500 participants, 40–60 years old, from Burkina Faso, Ghana, Kenya and South Africa. Following a process that involved community engagement, training of project staff and participant informed consent, participants were administered detailed questionnaires, anthropometric measurements were taken and biospecimens collected. This generated a wealth of demographic, health history, environmental, behavioural and biomarker data. The H3Africa SNP array will be used for genome-wide association studies. AWI-Gen is building capacity to perform large epidemiological, genomic and epigenomic studies across several African counties and strives to become a valuable resource for research collaborations in Africa.
Early nutrition is critical for later health and sustainable development. We determined potential effectiveness of the Kenyan Community Health Strategy in promoting exclusive breastfeeding (EBF) in urban poor settings in Nairobi, Kenya. We used a quasi-experimental study design, based on three studies [Pre-intervention (2007–2011; n=5824), Intervention (2012–2015; n=1110) and Comparison (2012–2014; n=487)], which followed mother–child pairs longitudinally to establish EBF rates from 0 to 6 months. The Maternal, Infant and Young Child Nutrition (MIYCN) study was a cluster randomized trial; the control arm (MIYCN-Control) received standard care involving community health workers (CHWs) visits for counselling on antenatal and postnatal care. The intervention arm (MIYCN-Intervention) received standard care and regular MIYCN counselling by trained CHWs. Both groups received MIYCN information materials. We tested differences in EBF rates from 0 to 6 months among four study groups (Pre-intervention, MIYCN-Intervention, MIYCN-Control and Comparison) using a χ2 test and logistic regression. At 6 months, the prevalence of EBF was 2% in the Pre-intervention group compared with 55% in the MIYCN-Intervention group, 55% in the MIYCN-Control group and 3% in the Comparison group (P<0.05). After adjusting for baseline characteristics, the odds ratio for EBF from birth to 6 months was 66.9 (95% CI 45.4–96.4), 84.3 (95% CI 40.7–174.6) and 3.9 (95% CI 1.8–8.4) for the MIYCN-Intervention, MIYCN-Control and Comparison group, respectively, compared with the Pre-intervention group. There is potential effectiveness of the Kenya national Community Health Strategy in promoting EBF in urban poor settings where health care access is limited.
The generation and migration of gas within and around proposed radioactive waste disposal facilities is potentially a safety critical process. A safety case for a facility that generates significant quantities of gas (e.g. through metal corrosion or radiolysis) will require demonstration that gas migration around and away from the waste is sufficiently understood and will not breach the safety case for the facility. Models can be used to understand the likely hydraulic evolution of such a disposal facility, but the models need to consider processes over a range of scales. A whole repository may extend over kilometres, with individual disposal cells at the scale of tens of metres and features which provide pathways for gas migration on a centimetre scale. All of these features may be significant from a safety perspective and capturing the impact of all of these features in a single model is a significant challenge.
This paper presents an approach to tackling this multi-scale problem, which allows the whole repository to be modelled in a computationally efficient manner. The approach involves identifying areas within the modelled domain that show very similar behaviour, and representing these areas with sub-models, so that small-scale features are retained, but computational overhead is decreased by using the results in more than one location in the model domain. The approach allowed a model of a whole repository to be run on a single processor core, whilst maintaining the small-scale features of the system. The model results were compared against more conventional upscaling techniques and show the advantage of a more detailed representation of small-scale features. The model results reflect the conceptual understanding of how gas would migrate in a repository.
The Evolutionary Map of the Universe (EMU) is a proposed radio continuum survey
of the Southern Hemisphere up to declination + 30°, with the Australian
Square Kilometre Array Pathfinder (ASKAP). EMU will use an automated source
identification and measurement approach that is demonstrably optimal, to
maximise the reliability and robustness of the resulting radio source
catalogues. As a step toward this goal we conducted a “Data
Challenge” to test a variety of source finders on simulated images. The
aim is to quantify the accuracy and limitations of existing automated source
finding and measurement approaches. The Challenge initiators also tested the
current ASKAPsoft source-finding tool to establish how it could benefit from
incorporating successful features of the other tools. As expected, most finders
show completeness around 100% at ≈ 10σ dropping to about 10% by
≈ 5σ. Reliability is typically close to 100% at ≈
10σ, with performance to lower sensitivities varying between finders. All
finders show the expected trade-off, where a high completeness at low
signal-to-noise gives a corresponding reduction in reliability, and vice versa.
We conclude with a series of recommendations for improving the performance of
the ASKAPsoft source-finding tool.