We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to investigate the function of tissue plasminogen activator in the olfactory epithelium of mice following neural injury.
Method:
Transmission electron microscopy was used to study the changes in the morphology of the olfactory epithelium 1–7 days after surgical ablation of the olfactory bulb (bulbectomy).
Results:
Prior to bulbectomy, a uniformly fine material was observed within some regions of the olfactory epithelium of mice deficient in tissue plasminogen activator. At 2–3 days after bulbectomy, there were degenerative changes in the olfactory epithelium. At 5–7 days after bulbectomy, we noted drastic differences in olfactory epithelium morphology between mice deficient in tissue plasminogen activator and wild-type mice (comparisons were made using findings from a previous study). The microvilli seemed to be normal and olfactory vesicles and receptor neuron dendrites were largely intact in the olfactory epithelium of mice deficient in tissue plasminogen activator.
Conclusion:
The tissue plasminogen activator plasmin system may inhibit the regeneration of the olfactory epithelium in the early stages following neural injury.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.