Surgical resection has been the mainstay of treatment for the minority of patients diagnosed with primary lung cancer and for selected patients with pulmonary metastatic disease. However, most patients with thoracic malignancies have little recourse other than the modest therapeutic benefits of chemotherapy or radiotherapy, which offer little chance for quality, prolonged survival.
Thermal ablation is an exciting new technique that offers clinicians and patients new hope with a repeatable, effective, low-cost, and safe treatment to effectively palliate and, in some cases, cure both primary and metastatic thoracic malignancies either before or concurrent with systemic therapy and radiotherapy.
The natural history of thoracic malignancies is of locoregional treatment failure and distant recurrence, except for non-small cell, primary lung cancers less than 2 cm in diameter, for which the likelihood of regional (extra-segmental) spread is small and surgery may be most appropriate. Although thermal ablation strategies have been used in patients with primary lung cancer who are too sick or have disease burdens that are too great for surgical therapy, most thoracic oncologists now recognize that primary lung cancer, like metastatic lung cancer, is a systemic disease with bewildering heterogeneity at the start, and that effective, local palliation and systemic therapy for both primary and metastatic thoracic cancer is the goal.
In this chapter, we discuss the basic physics of thermal ablation, applications for thermal ablation therapy in the thorax and technical considerations for thermal ablation.