We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
There is growing evidence that gray matter atrophy is constrained by normal brain network (or connectome) architecture in neuropsychiatric disorders. However, whether this finding holds true in individuals with depression remains unknown. In this study, we aimed to investigate the association between gray matter atrophy and normal connectome architecture at individual level in depression.
Methods
In this study, 297 patients with depression and 256 healthy controls (HCs) from two independent Chinese dataset were included: a discovery dataset (105 never-treated first-episode patients and matched 130 HCs) and a replication dataset (106 patients and matched 126 HCs). For each patient, individualized regional atrophy was assessed using normative model and brain regions whose structural connectome profiles in HCs most resembled the atrophy patterns were identified as putative epicenters using a backfoward stepwise regression analysis.
Results
In general, the structural connectome architecture of the identified disease epicenters significantly explained 44% (±16%) variance of gray matter atrophy. While patients with depression demonstrated tremendous interindividual variations in the number and distribution of disease epicenters, several disease epicenters with higher participation coefficient than randomly selected regions, including the hippocampus, thalamus, and medial frontal gyrus were significantly shared by depression. Other brain regions with strong structural connections to the disease epicenters exhibited greater vulnerability. In addition, the association between connectome and gray matter atrophy uncovered two distinct subgroups with different ages of onset.
Conclusions
These results suggest that gray matter atrophy is constrained by structural brain connectome and elucidate the possible pathological progression in depression.
Obsessive-compulsive disorder (OCD) is a chronic mental illness characterized by abnormal functional connectivity among distributed brain regions. Previous studies have primarily focused on undirected functional connectivity and rarely reported from network perspective.
Methods
To better understand between or within-network connectivities of OCD, effective connectivity (EC) of a large-scale network is assessed by spectral dynamic causal modeling with eight key regions of interests from default mode (DMN), salience (SN), frontoparietal (FPN) and cerebellum networks, based on large sample size including 100 OCD patients and 120 healthy controls (HCs). Parametric empirical Bayes (PEB) framework was used to identify the difference between the two groups. We further analyzed the relationship between connections and Yale-Brown Obsessive Compulsive Scale (Y-BOCS).
Results
OCD and HCs shared some similarities of inter- and intra-network patterns in the resting state. Relative to HCs, patients showed increased ECs from left anterior insula (LAI) to medial prefrontal cortex, right anterior insula (RAI) to left dorsolateral prefrontal cortex (L-DLPFC), right dorsolateral prefrontal cortex (R-DLPFC) to cerebellum anterior lobe (CA), CA to posterior cingulate cortex (PCC) and to anterior cingulate cortex (ACC). Moreover, weaker from LAI to L-DLPFC, RAI to ACC, and the self-connection of R-DLPFC. Connections from ACC to CA and from L-DLPFC to PCC were positively correlated with compulsion and obsession scores (r = 0.209, p = 0.037; r = 0.199, p = 0.047, uncorrected).
Conclusions
Our study revealed dysregulation among DMN, SN, FPN, and cerebellum in OCD, emphasizing the role of these four networks in achieving top-down control for goal-directed behavior. There existed a top-down disruption among these networks, constituting the pathophysiological and clinical basis.
Mental disorders, including depression, obsessive compulsive disorder (OCD), and schizophrenia, share a common neuropathy of disturbed large-scale coordinated brain maturation. However, high-interindividual heterogeneity hinders the identification of shared and distinct patterns of brain network abnormalities across mental disorders. This study aimed to identify shared and distinct patterns of altered structural covariance across mental disorders.
Methods
Subject-level structural covariance aberrance in patients with mental disorders was investigated using individualized differential structural covariance network. This method inferred structural covariance aberrance at the individual level by measuring the degree of structural covariance in patients deviating from matched healthy controls (HCs). T1-weighted anatomical images of 513 participants (105, 98, 190 participants with depression, OCD and schizophrenia, respectively, and 130 age- and sex-matched HCs) were acquired and analyzed.
Results
Patients with mental disorders exhibited notable heterogeneity in terms of altered edges, which were otherwise obscured by group-level analysis. The three disorders shared high difference variability in edges attached to the frontal network and the subcortical-cerebellum network, and they also exhibited disease-specific variability distributions. Despite notable variability, patients with the same disorder shared disease-specific groups of altered edges. Specifically, depression was characterized by altered edges attached to the subcortical-cerebellum network; OCD, by altered edges linking the subcortical-cerebellum and motor networks; and schizophrenia, by altered edges related to the frontal network.
Conclusions
These results have potential implications for understanding heterogeneity and facilitating personalized diagnosis and interventions for mental disorders.
Elucidating individual aberrance is a critical first step toward precision medicine for heterogeneous disorders such as depression. The neuropathology of depression is related to abnormal inter-regional structural covariance indicating a brain maturational disruption. However, most studies focus on group-level structural covariance aberrance and ignore the interindividual heterogeneity. For that reason, we aimed to identify individualized structural covariance aberrance with the help of individualized differential structural covariance network (IDSCN) analysis.
Methods
T1-weighted anatomical images of 195 first-episode untreated patients with depression and matched healthy controls (n = 78) were acquired. We obtained IDSCN for each patient and identified subtypes of depression based on shared differential edges.
Results
As a result, patients with depression demonstrated tremendous heterogeneity in the distribution of differential structural covariance edges. Despite this heterogeneity, altered edges within subcortical-cerebellum network were often shared by most of the patients. Two robust neuroanatomical subtypes were identified. Specifically, patients in subtype 1 often shared decreased motor network-related edges. Patients in subtype 2 often shared decreased subcortical-cerebellum network-related edges. Functional annotation further revealed that differential edges in subtype 2 were mainly implicated in reward/motivation-related functional terms.
Conclusions
In conclusion, we investigated individualized differential structural covariance and identified that decreased edges within subcortical-cerebellum network are often shared by patients with depression. The identified two subtypes provide new insights into taxonomy and facilitate potential clues to precision diagnosis and treatment of depression.
As a neuroprogressive illness, depression is accompanied by brain structural abnormality that extends to many brain regions. However, the progressive structural alteration pattern remains unknown.
Methods
To elaborate the progressive structural alteration of depression according to illness duration, we recruited 195 never-treated first-episode patients with depression and 130 healthy controls (HCs) undergoing T1-weighted MRI scans. Voxel-based morphometry method was adopted to measure gray matter volume (GMV) for each participant. Patients were first divided into three stages according to the length of illness duration, then we explored stage-specific GMV alterations and the causal effect relationship between them using causal structural covariance network (CaSCN) analysis.
Results
Overall, patients with depression presented stage-specific GMV alterations compared with HCs. Regions including the hippocampus, the thalamus and the ventral medial prefrontal cortex (vmPFC) presented GMV alteration at onset of illness. Then as the illness advanced, others regions began to present GMV alterations. These results suggested that GMV alteration originated from the hippocampus, the thalamus and vmPFC then expanded to other brain regions. The results of CaSCN analysis revealed that the hippocampus and the vmPFC corporately exerted causal effect on regions such as nucleus accumbens, the precuneus and the cerebellum. In addition, GMV alteration in the hippocampus was also potentially causally related to that in the dorsolateral frontal gyrus.
Conclusions
Consistent with the neuroprogressive hypothesis, our results reveal progressive morphological alteration originating from the vmPFC and the hippocampus and further elucidate possible details about disease progression of depression.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.