We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Late-life depression (LLD) is common and frequently co-occurs with neurodegenerative diseases of aging. Little is known about how heterogeneity within LLD relates to factors typically associated with neurodegeneration. Varying levels of anxiety are one source of heterogeneity in LLD. We examined associations between anxiety symptom severity and factors associated with neurodegeneration, including regional brain volumes, amyloid beta (Aβ) deposition, white matter disease, cognitive dysfunction, and functional ability in LLD.
Participants and Measurements:
Older adults with major depression (N = 121, Ages 65–91) were evaluated for anxiety severity and the following: brain volume (orbitofrontal cortex [OFC], insula), cortical Aβ standardized uptake value ratio (SUVR), white matter hyperintensity (WMH) volume, global cognition, and functional ability. Separate linear regression analyses adjusting for age, sex, and concurrent depression severity were conducted to examine associations between anxiety and each of these factors. A global regression analysis was then conducted to examine the relative associations of these variables with anxiety severity.
Results:
Greater anxiety severity was associated with lower OFC volume (β = −68.25, t = −2.18, p = .031) and greater cognitive dysfunction (β = 0.23, t = 2.46, p = .016). Anxiety severity was not associated with insula volume, Aβ SUVR, WMH, or functional ability. When examining the relative associations of cognitive functioning and OFC volume with anxiety in a global model, cognitive dysfunction (β = 0.24, t = 2.62, p = .010), but not OFC volume, remained significantly associated with anxiety.
Conclusions:
Among multiple factors typically associated with neurodegeneration, cognitive dysfunction stands out as a key factor associated with anxiety severity in LLD which has implications for cognitive and psychiatric interventions.
Treatment for hoarding disorder is typically performed by mental health professionals, potentially limiting access to care in underserved areas.
Aims
We aimed to conduct a non-inferiority trial of group peer-facilitated therapy (G-PFT) and group psychologist-led cognitive–behavioural therapy (G-CBT).
Method
We randomised 323 adults with hording disorder 15 weeks of G-PFT or 16 weeks of G-CBT and assessed at baseline, post-treatment and longitudinally (≥3 months post-treatment: mean 14.4 months, range 3–25). Predictors of treatment response were examined.
Results
G-PFT (effect size 1.20) was as effective as G-CBT (effect size 1.21; between-group difference 1.82 points, t = −1.71, d.f. = 245, P = 0.04). More homework completion and ongoing help from family and friends resulted in lower severity scores at longitudinal follow-up (t = 2.79, d.f. = 175, P = 0.006; t = 2.89, d.f. = 175, P = 0.004).
Conclusions
Peer-led groups were as effective as psychologist-led groups, providing a novel treatment avenue for individuals without access to mental health professionals.
Declaration of interest
C.A.M. has received grant funding from the National Institutes of Health (NIH) and travel reimbursement and speakers’ honoraria from the Tourette Association of America (TAA), as well as honoraria and travel reimbursement from the NIH for serving as an NIH Study Section reviewer. K.D. receives research support from the NIH and honoraria and travel reimbursement from the NIH for serving as an NIH Study Section reviewer. R.S.M. receives research support from the National Institute of Mental Health, National Institute of Aging, the Hillblom Foundation, Janssen Pharmaceuticals (research grant) and the Alzheimer's Association. R.S.M. has also received travel support from the National Institute of Mental Health for Workshop participation. J.Y.T. receives research support from the NIH, Patient-Centered Outcomes Research Institute and the California Tobacco Related Research Program, and honoraria and travel reimbursement from the NIH for serving as an NIH Study Section reviewer. All other authors report no conflicts of interest.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.