The transition from limited-slip conditions at the base of grounded ice to free-slip conditions beneath floating ice occurs across the few-kilometers-wide grounding zone. This region involves either an elastic flexural transition from bedrock to hydrostatically supported elevations (often tidally influenced), a transition from thicker to thinner ice over a flat bed, or some combination of these two processes. In either case, ice must flow across a changing stress field, often resulting in brittle deformation, manifested as basal crevassing. Thus the position and morphology of basal crevasses reveal important information about the stress state across this transition. Our gridded ground-based radar surveys on Whillans Ice Stream, West Antarctica, indicate a complex pattern of basal crevasses, but most are associated with regions where the surface elevation gradient is steepest. Due to the high reflectivity of sea water, we image many off-nadir crevasses from a corner-reflector geometry involving reflections from the ice/sea-water interface and then from the crevasse, producing echoes with an inverted phase that could be misinterpreted as subglacial returns. Our results indicate that basal crevasses offer a rich dataset for diagnosing stress state and salient processes across grounding zones, and that special care is needed when interpreting subglacial returns in radar data.