We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
CZT is a semiconductor material that promises to be a good candidate for uncooled gamma radiation detectors. However, to date, technological difficulties in production of large size defect-free CZT crystals are yet to be overcome. The most common problem is accumulation of tellurium precipitates as microscopic inclusions. These inclusions influence the charge collection through charge trapping and electric field distortion. The common work-around solutions are to fabricate pixelated detectors by either grouping together many small volume CZT crystals to act as individual detectors, or to deposit a pixelated grid of electrical contacts on a larger, but defective, crystal, and selectively collect charge. These solutions are satisfactory in an R&D environment, but are unsuitable for mass production and commercial development. Our modeling effort is aimed at quantifying the various contributions of tellurium inclusions in CZT crystals to the charge generation, transport, and collection, as a function of inclusions size, position, and concentration. We model the energy deposition of gamma photons in the sensitive volume of the detector using LANL’s MCNP code. The electron-hole pairs produced at the energy deposition sites are then transported through the defective crystal and collected as integral charge at the electrical contact sites using CERN’s Garfield software package. The size and position distribution of tellurium inclusions is modeled by sampling experimentally measured distributions of such inclusions on a variety of commercially-grown CZT crystals using IR microscopy and image processing software packages.
Field studies were conducted in 2001 in Lewiston, NC, and in 2002 at Clayton and Lewiston, NC, to investigate the response of nontransgenic cotton to simulated glyphosate drift in a weed-free environment. Nontransgenic cotton variety ‘Fibermax 989’ was planted in a conventional seedbed at all locations. Glyphosate treatments were applied early postemergence (EPOST) at the four-leaf growth stage of cotton at 0, 8.7, 17.5, 35, 70, 140, 280, 560, and 1,120 g ai/ha and represent 0, 0.78, 1.55, 3.13, 6.25, 12.5, 25, 50, and 100% of the commercial use rate, respectively. Rates as low as 140 g/ha caused lint yield reductions depending on year and location. When averaged over all locations, lint yield reductions of 4, 49, 72, and 87% compared with nontreated cotton were observed with glyphosate rates of 140, 280, 560, and 1,120 g/ha, respectively. Visual injury and shikimic acid accumulation were evident at glyphosate rates greater or equal to 70 g/ha. Collectively, visual injury and shikimic acid accumulation at 7 d after EPOST treatment might be used as a diagnostic indicator to predict potential yield reductions from simulated glyphosate drift.
Email your librarian or administrator to recommend adding this to your organisation's collection.