The dynamics of the molecular envelopes surrounding ultracompact H II regions has been the subject of much debate. Since the envelopes often exhibit molecular line emission, line observations have been the primary method of probing these circumstellar shells. The existence of expansive motions in the molecular clouds surrounding massive newly formed stars has been firmly established. Proper motion studies of galactic water masers indicate general expansion, whereas high resolution CO studies often show collimated bipolar outflows centered on continuum H II regions. Maps of the OH maser emission, often associated with these regions, show the masers scattered, apparently randomly, in both position and velocity across an area a few arcseconds in size. Typical velocity ranges for the associated OH maser emission are on the order of 10 km s−1. A number of models of the dynamical and physical conditions of the masing envelope have been developed to explain the properties of specific regions, e.g., collapsing remnant accretion envelopes, rotating disks or tori of neutral material, and expanding shells of shocked material. There is evidence from comparing the velocities of the OH masers to that of recombination lines associated with the underlying H II regions that in most sources the OH masers are formed in material still accreting toward the central object (Garay et al., 1985) (however see Welch and Marr, 1986). Mirabel et al., 1986, have reported the detection of (thermal and subthermal) high velocity OH outflow in several regions of star formation, demonstrating that OH molecules, at least in some instances, are also involved in collimated flows from central stellar objects.