We consider the equation of a one-dimensional viscous heat-conducting compressible gas in the variable domain with the appropriate boundary conditions. We study the large-time behaviour of the solution in the particular case where the displacement of the variable boundary is given by $L(t)=L_0(1+at)^\alpha$ with $0lt\alphalt1$, where $a$ is a positive constant and $L_0$ is the initial amplitude of our domain.
AMS 2000 Mathematics subject classification: Primary 35B40; 76N15