We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Dignity therapy (DT) is designed to address psychological and existential challenges that terminally ill individuals face. DT guides patients in developing a written legacy project in which they record and share important memories and messages with those they will leave behind. DT has been demonstrated to ease existential concerns for adults with advanced-stage cancer; however, lack of institutional resources limits wide implementation of DT in clinical practice. This study explores qualitative outcomes of an abbreviated, less resource-intensive version of DT among participants with advanced-stage cancer and their legacy project recipients.
Method
Qualitative methods were used to analyze postintervention interviews with 11 participants and their legacy recipients as well as the created legacy projects. Direct content analysis was used to assess feedback from the interviews about benefits, barriers, and recommendations regarding abbreviated DT. The legacy projects were coded for expression of core values.
Result
Findings suggest that abbreviated DT effectively promotes (1) self-expression, (2) connection with loved ones, (3) sense of purpose, and (4) continuity of self. Participants observed that leading the development of their legacy projects promoted independent reflection, autonomy, and opportunities for family interaction when reviewing and discussing the projects. Consistent with traditional DT, participants expressed “family” as the most common core value in their legacy projects. Expression of “autonomy” was also a notable finding.
Significance of results
Abbreviated DT reduces resource barriers to conducting traditional DT while promoting similar benefits for participants and recipients, making it a promising adaptation warranting further research. The importance that patients place on family and autonomy should be honored as much as possible by those caring for adults with advanced-stage cancer.
Paediatric hospital-associated venous thromboembolism is a leading quality and safety concern at children’s hospitals.
Objective
The aim of this study was to determine risk factors for hospital-associated venous thromboembolism in critically ill children following cardiothoracic surgery or therapeutic cardiac catheterisation.
Methods
We conducted a retrospective, case–control study of children admitted to the cardiovascular intensive care unit at Johns Hopkins All Children’s Hospital (St. Petersburg, Florida, United States of America) from 2006 to 2013. Hospital-associated venous thromboembolism cases were identified based on ICD-9 discharge codes and validated using radiological record review. We randomly selected two contemporaneous cardiovascular intensive care unit controls without hospital-associated venous thromboembolism for each hospital-associated venous thromboembolism case, and limited the study population to patients who had undergone cardiothoracic surgery or therapeutic cardiac catheterisation. Odds ratios and 95% confidence intervals for associations between putative risk factors and hospital-associated venous thromboembolism were determined using univariate and multivariate logistic regression.
Results
Among 2718 admissions to the cardiovascular intensive care unit during the study period, 65 met the criteria for hospital-associated venous thromboembolism (occurrence rate, 2%). Restriction to cases and controls having undergone the procedures of interest yielded a final study population of 57 hospital-associated venous thromboembolism cases and 76 controls. In a multiple logistic regression model, major infection (odds ratio=5.77, 95% confidence interval=1.06–31.4), age ⩽1 year (odds ratio=6.75, 95% confidence interval=1.13–160), and central venous catheterisation (odds ratio=7.36, 95% confidence interval=1.13–47.8) were found to be statistically significant independent risk factors for hospital-associated venous thromboembolism in these children. Patients with all three factors had a markedly increased post-test probability of having hospital-associated venous thromboembolism.
Conclusion
Major infection, infancy, and central venous catheterisation are independent risk factors for hospital-associated venous thromboembolism in critically ill children following cardiothoracic surgery or cardiac catheter-based intervention, which, in combination, define a high-risk group for hospital-associated venous thromboembolism.
During the 1997/98 field season, Sweden, Norway and The Netherlands performed a pre-site survey for EPICA in Dronning Maud Land, Antarctica. This paper summarizes the results and pays special attention to the high spatial gradients found in snow layering and temperatures. The sites were "Camp Victoria" (CV) on Amundsenisen (76° S, 8° W; 2400 m a.s.l.), approximately 550 km from the coast, and "Camp Maudheimvidda" (CM) on Maudheimvidda (74° S 13° W; 362 m a.s.L), some 140 km from the coast.
The drilling programme included both medium-long firn/ice cores and shallow firn cores. These were analysed by means of δ18O, DEP, ECM,β activity, density, and ion content. The combined results suggests a mean annual accumulation rate of 60 mm. we. for CV and 220 mm. we. for CM.
Variability measurements of spatial snow layering were performed at two scales; over tens of kilometres by radar and over a few metres by pits and high-resolution radar soundings. Results, as measured by relative standard deviation, were typically 10% on the polar plateau and as high as 50% near the coast.
The 10 m temperature measurements were –38.5°C (std dev. = 0.5°) for CV and –17.6°C (std dev.=0.15°) for CM.
Snow chemistry was sampled at each medium-long-core drill site. Comparison of δ18O profiles from snow pits and the uppermost part of the CV medium-long core showed large variations. Mean δ18O valuesover 2 m profiles varied between 41.6%, and 39.7%o within a horizontal distance of 50 m.
We present the design and first results from two experiments using a wireless subglacial sensor system (WiSe) that is able to transmit data through 2500 m thick ice. Energy consumption of the probes is minimized, enabling the transmission of data for at least 10 years. In July 2010 the first prototype of the system was used to measure subglacial pressure at the base and a temperature profile consisting of 23 probes in two 600 m deep holes at Russell Glacier, a land-terminating part of the West Greenland ice sheet near Kangerlussuaq. The time series of subglacial pressure show very good agreement between data from the WiSe system and the wired reference system. The wireless-measured temperature data were validated by comparison with the theoretical decrease of melting point with water pressure inside the water-filled hole directly after installation. To test the depth range of the WiSe system a second experiment using three different probe types and two different surface antennas was performed inside the 2537 m deep hole at NEEM. It is demonstrated that, with the proper combination of transmission power and surface antenna type, the WiSe system transmits data through 2500 m thick ice.
Radar data (center frequency 150 MHz) collected on the Antarctic plateau near the EPICA deep-drilling site in Dronning Maud Land vary systematically in backscattered power, depending on the azimuth antenna orientation. Backscatter extrema are aligned with the principal directions of surface strain rates and change with depth. In the upper 900m, backscatter is strongest when the antenna polarization is aligned in the direction of maximal compression, while below 900 m the maxima shift by 90° pointing towards the lateral flow dilatation. We investigate the backscatter from elongated air bubbles and a vertically varying crystal-orientation fabric (COF) using different scattering models in combination with ice-core data. We hypothesize that short-scale variations in COF are the primary mechanism for the observed anisotropy, and the 900 m boundary between the two regimes is caused by ice with varying impurity content. Observations of this kind allow the deduction of COF variations with depth and are potentially also suited to map the transition between Holocene and glacial ice.
This paper presents an overview of firn accumulation in Dronning Maud Land (DML), Antarctica, over the past 1000 years. It is based on a chronology established with dated volcanogenic horizons detected by dielectric profiling of six medium-length firn cores. In 1998 the British Antarctic Survey retrieved a medium-length firn core from western DML. During the Nordic EPICA (European Project for Ice Coring in Antarctica) traverse of 2000/01, a 160 m long firn core was drilled in eastern DML. Together with previously published data from four other medium-length ice cores from the area, these cores yield 50 possible volcanogenic horizons. All six firn cores cover a mutual time record until the 29th eruption. This overlapping period represents a period of approximately 1000 years, with mean values ranging between 43 and 71 mm w.e. The cores revealed no significant trend in snow accumulation. Running averages over 50 years, averaged over the six cores, indicate temporal variations of5%. All cores display evidence of a minimum in the mean annual firn accumulation rate around AD 1500 and maxima around AD 1400 and 1800. The mean increase over the early 20th century was the strongest increase, but the absolute accumulation rate was not much higher than around AD 1400. In eastern DML a 13% increase is observed for the second half of the 20th century.
We report on the EPICA Dronning Maud Land (East Antarctica) deep drilling operation. Starting with the scientific questions that led to the outline of the EPICA project, we introduce the setting of sister drillings at NorthGRIP and EPICA Dome C within the European ice-coring community. The progress of the drilling operation is described within the context of three parallel, deep-drilling operations, the problems that occurred and the solutions we developed. Modified procedures are described, such as the monitoring of penetration rate via cable weight rather than motor torque, and modifications to the system (e.g. closing the openings at the lower end of the outer barrel to reduce the risk of immersing the drill in highly concentrated chip suspension). Parameters of the drilling (e.g. core-break force, cutter pitch, chips balance, liquid level, core production rate and piece number) are discussed. We also review the operational mode, particularly in the context of achieved core length and piece length, which have to be optimized for drilling efficiency and core quality respectively. We conclude with recommendations addressing the design of the chip-collection openings and strictly limiting the cable-load drop with respect to the load at the start of the run.
Variations in atmospheric conditions can be important factors influencing temperature dynamics within the active layer of a soil. Solar radiation and air temperature can directly alter ground surface temperatures, while variations in wind and precipitation can control how quickly heat is carried through soil pores. The presence of seasonal snow cover can also create a thermal barrier between the atmosphere and ground surface. This study examines the relation between atmospheric conditions and ground temperature variations on a deglaciated island along the Western Antarctic Peninsula. Ground temperatures were most significantly influenced by incoming solar radiation, followed by air temperature variations. When winter months were included in the comparison, the influence of air temperature increased while solar radiation became less influential, indicating that snow cover reflected solar radiation inputs, but was not thick enough to insulate the ground. When ground temperatures were compared to atmospheric conditions of preceding weeks, seasonal temperature peaks 1.6 m below ground were best related to seasonal air temperature peaks from the previous two weeks. The same ground temperature peaks were best related to seasonal solar radiation peaks of seven weeks prior. This difference was a result of temperature lags within the atmosphere.
We present a new estimate of the mass of the Milky Way, making use of a large sample of 955 field horizontal-branch (FHB) stars from the Early Data Release of the Sloan Digital Sky Survey. This sample of stars has been classified on the basis of an automated analysis approach, in combination with other methods, in order to obtain estimates of the physical parameters of the stars, i.e., Teff, log g, [Fe/H], and should be relatively free of contamination from halo blue stragglers. the stars all have measured radial velocities and photometric distance estimates, and the sample includes objects as distant as ~ 75 kpc from the Galactic center. Application of a Bayesian likelihood method, for a specific model of the Galaxy, indicates that the total mass of the Galaxy lies in the range 1.5 − 4.0 × 1012 M⊙. Our sample appears to reveal a clear signature of a dual halo population of FHB stars, with the boundary between the inner and outer halo around 20 kpc, and the possibility of rather striking differences in the rotational properties of the Galaxy at low metallicity.
The question of the title of Commission 24, obviously, offers a difficult problem as already mentioned in recent reports. Photographic Astrometry no longer describes the whole scope of the commission. This problem has continued during the last three years especially in view of the preparations for the astrometric tasks of the NASA Space Telescope and of the ESA satellite HIPPARCOS.
In 1865, the Swedish geologist Carl Wilhelm Paijkull (1836–69) made a voyage from Copenhagen to Iceland, a country that was still little understood by the rest of Europe. In the course of a trip that had a chiefly scientific purpose, Paijkull noted not only the geological features of the island, but also many salient aspects of Icelandic culture in a detailed yet readable style. The book features a number of striking engravings of natural features, including the volcano Hekla, as well as depictions of Icelanders engaging in activities such as drying fish or crossing a river. Paijkull ranges widely in his narrative, commenting on the Icelandic fondness for dogs, historical and contemporary friction with Denmark, and the island's economic fortunes. His perceptive account was first published in Swedish in 1866 and is reissued here in the English translation that appeared in 1868.