We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We have observed the G23 field of the Galaxy AndMass Assembly (GAMA) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) in its commissioning phase to validate the performance of the telescope and to characterise the detected galaxy populations. This observation covers ~48 deg2 with synthesised beam of 32.7 arcsec by 17.8 arcsec at 936MHz, and ~39 deg2 with synthesised beam of 15.8 arcsec by 12.0 arcsec at 1320MHz. At both frequencies, the root-mean-square (r.m.s.) noise is ~0.1 mJy/beam. We combine these radio observations with the GAMA galaxy data, which includes spectroscopy of galaxies that are i-band selected with a magnitude limit of 19.2. Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry is used to determine which galaxies host an active galactic nucleus (AGN). In properties including source counts, mass distributions, and IR versus radio luminosity relation, the ASKAP-detected radio sources behave as expected. Radio galaxies have higher stellar mass and luminosity in IR, optical, and UV than other galaxies. We apply optical and IR AGN diagnostics and find that they disagree for ~30% of the galaxies in our sample. We suggest possible causes for the disagreement. Some cases can be explained by optical extinction of the AGN, but for more than half of the cases we do not find a clear explanation. Radio sources aremore likely (~6%) to have an AGN than radio quiet galaxies (~1%), but the majority of AGN are not detected in radio at this sensitivity.
We are investigating complete samples of southern hemisphere flat spectrum extra-galactic radio sources drawn from the Parkes 2.7 GHz Survey (see Bolton et al. 1979 and references therein). These samples are being used for a variety of investigations, including a determination of the space distribution and luminosity function of radio QSOs, their radio size distribution, as well as the structures of the individual sources. Accurate positions are being determined, as well, in order to establish an extra-galactic position reference frame in the southern hemisphere.
We describe the performance of the Boolardy Engineering Test Array, the prototype for the Australian Square Kilometre Array Pathfinder telescope. Boolardy Engineering Test Array is the first aperture synthesis radio telescope to use phased array feed technology, giving it the ability to electronically form up to nine dual-polarisation beams. We report the methods developed for forming and measuring the beams, and the adaptations that have been made to the traditional calibration and imaging procedures in order to allow BETA to function as a multi-beam aperture synthesis telescope. We describe the commissioning of the instrument and present details of Boolardy Engineering Test Array’s performance: sensitivity, beam characteristics, polarimetric properties, and image quality. We summarise the astronomical science that it has produced and draw lessons from operating Boolardy Engineering Test Array that will be relevant to the commissioning and operation of the final Australian Square Kilometre Array Path telescope.
Resolved images of the disks of the largest stars observed with the largest telescopes can be constructed using the class of techniques called speckle imaging. The observations must be made with narrow passbands (~ 10 nm), short exposures (~ 20 ms) compensation for atmospheric dispersion, high magnification and good signal-to-noise ratio. One specific technique applied to a Ori (Lynds et al., 1976) shows slight but apparently real differences in the images of the disk corresponding to low and high opacity in the stellar atmosphere which we interpret as due to temperature differences. There are also significant differences in the star’s diameter and/or limb darkening at the two different opacity wavelengths.
The synoptic observations of the magnetic field of the Sun have continued at the National Solar Observatory (NSO) since 1970s. The daily full-disk maps of the longitudinal magnetic field are regularly combined to form Carrington maps of the photospheric magnetic flux per solar rotation. These maps continue to be used by the international research community for a variety of studies related to solar magnetism as well as for space weather studies. The current NSO synoptic facility is the Synoptic Optical Long-term Investigation of the Sun (SOLIS), which regularly provides photospheric vector and chromospheric longitudinal full-disk magnetograms, among other data products. In the near future, an upgrade of SOLIS to produce chromospheric vector magnetograms is planned. We present the design of a new polarization modulator package for full Stokes polarimetry of the chromospheric Ca II 854.2 nm spectral line.
In 1811, François Arago observed the disk of the Sun with his “lunette polariscopique”. From the absence of detectable polarization compared with his laboratory observations of glowing solids, liquids, and flames he concluded that the Sun's visible surface is an incandescent gas. From this beginning, thanks to orders of magnitude technology improvements, a remarkable amount of what we know about the physics of the Sun has continued to flow from solar polarimetry. This short review compares some selected polarimetric discoveries with subsequent recent observations to illustrate the tremendous progress of solar polarimetry during the last two centuries.
This paper describes the system architecture of a newly constructed radio telescope – the Boolardy engineering test array, which is a prototype of the Australian square kilometre array pathfinder telescope. Phased array feed technology is used to form multiple simultaneous beams per antenna, providing astronomers with unprecedented survey speed. The test array described here is a six-antenna interferometer, fitted with prototype signal processing hardware capable of forming at least nine dual-polarisation beams simultaneously, allowing several square degrees to be imaged in a single pointed observation. The main purpose of the test array is to develop beamforming and wide-field calibration methods for use with the full telescope, but it will also be capable of limited early science demonstrations.
Because a great deal of nanoscience and nanotechnology relies on crystalline nanometer sized or nanometer structured materials, crystallographers have to provide their specific contributions to the National Nanotechnology Initiative. Here we review two open access internet-based crystallographic databases, the Crystallography Open Database (COD) and the Nano-Crystallography Database (NCD), that store information in the Crystallographic Information File (CIF) format. Having more than ten thousand crystallographic data sets available on the internet in a standardized format allows for many kinds of internet-based crystallographic calculations and visualizations. Examples for this that are dealt with in this paper are interactive crystal structure visualizations in three dimensions (3D) and calculations of theoretical lattice-fringe fingerprint plots for the identification of unknown nanocrystals from their atomic-resolution transmission electron microscopy images.
The relation of salmonella isolation efficiency and the size of inoculum introduced from a buffered peptone water culture of sewage polluted water into strontium chloride B medium was investigated. Two separate studies were made, one using enrichment at 37°C, the other at 43°C. From these trials, two inocula suitable for efficient salmonella isolation were determined. Using this information, strontium chloride B medium was compared with modified Rappaport's broth (R25). The inoculum used with R25 was 0·005 ml, determined in an earlier study. Two incubation temperatures were employed with strontium chloride enrichment (37 and 43°C). Rappaport's medium was incubated at 37°C only. Elevated temperature enrichment at 43°C improved the performance of strontium chloride B, but Rappaport's broth still gave significantly better results. This supports earlier studies on simplification of salmonella isolation and standardization of routine technique on a single enrichment medium: Rappaport broth (R25) incubated at 37°C.
Six hundred and eighty three samples of chicken giblets were examined for salmonellas. Three hundred and forty nine of these were neck and crop specimens and 334 were combined liver and heart samples. Two hundred and ten, in all, contained salmonellas.
The technique of examination included pre-enrichment in buffered peptone water at 37 °C for 18 h and subculture to three enrichment media: Muller-Kauffmann tetrathionate, selenite F and Rappaport's magnesium chloride malachite green broth. Inocula from buffered peptone water to 10 ml of tetrathionate and selenite were 1 ml in each case. The inoculum from the pre-enrichment medium to 10 ml of Rappaport was 0·005 ml. Tetrathionate and selenite were incubated at 43 °C for 48 h. Rappaport's medium was incubated at 37 °C for 48 h. Subcultures from all three enrichment broths were made at 24 h and 48 h to brilliant green MacConkey agar. Selective agars were incubated at 37 °C for 24 h.
The most successful technique for salmonella isolation used Rappaport's medium, which was significantly more efficient than either tetrathionate or selenite. This finding reinforces results obtained using sewage polluted natural water as test material and it is suggested that routine examination of environment samples for salmonellas could be based on Rappaport's medium alone.
If S. typhi, S. dublin or subgenus III salmonellas were likely to be present in the sample, the technique described here would require modification.
The influence of multiple plating of fluid cultures on salmonella isolation from animal feeding stuffs was examined. Four platings were made from broth culture after 24 h at 37 °C and four platings from selenite enrichment from 24 h at 43 °C. Selenite enrichment followed broth culture which was used as a pre-enrichment stage. Brilliant green MacConkey agar plates were employed for broth subculture and brilliant green MacConkey and desoxycholate citrate agars for selenite subculture. The eight brilliant green plates subcultured from broth and selenite were examined for salmonellas after incubation for 24 h at 37 °C. The four desoxycholate citrate agars after 24 h at 37 °C were used for motility enrichment. The food sample size was a single 100 g instead of 4 x 25 g cultured in an earlier study. This pooling of samples aimed at technical economy. Quadruple plating played an important part in salmonella isolation from 100 g specimens. The combination of multiple plating with motility enrichment was the most successful technique used.
A short study of salmonella isolation from reptile faeces is described. The samples came from the reptile house at the Bristol Zoological Gardens. The wide range of salmonella serotypes present in the material, including representatives of all four subgenera, is noted. The important factors in the technique of isolation are discussed. These are choice of inoculum, enrichment medium, and plating Medium, useof multiple subculture and serological isolation. If the number of samples available is scanty, an extended technique will probably yield more information than a simple method.
Using animal inoculation, three out of six Lebanese and three out of nine Argentinian and two out of two Pakistan separate commercial consignments of bone meal imported during 1970 were found to be infected with anthrax.
The development of Rappaport's enrichment medium and elevated temperature incubation as methods of salmonella isolation is traced. The recent recording of a merger of the two techniques by means of Rappaport–Vassiliadis medium is noted (RV medium).
In Cardiff, we have found an earlier modification of Rappaport's enrichment (R25) by Vassiliadis to be efficient in salmonella recovery from environment samples. The current study compares the two media using sewage polluted natural water as test material. Under the conditions of experiment, R25 was more successful in salmonella isolation than RV, although the latter medium inhibited competitive organisms better.
R25 is a convenient enrichment broth for routine use. In combination with pre-enrichment it allows the use of a loop for subculture rather than a pipette. This increases safe manipulation. It also produces a high proportion of positive isolations at the 24 h subculture time in contrast to other enrichment broths. For these reasons it forms an integral part of salmonella isolation methodology in our laboratory.
An investigation to test the efficiency of chemical closets in treating excreta from typhoid carriers is described. The use of these closets kept a stream, which had in the past frequently contained Salmonella typhi, typhoid free for 24 months. Selenite broth as made in this laboratory, containing a final concentration of 0·8% sodium hydrogen selenite when inoculated with the water sample, was significantly better than commercial selenite brilliant green enrichment broth for the recovery of S. typhi.
The family consisted of two parents and five children. While the father remained in Cardiff, the mother and all the children visited Rawalpindi, Pakistan, for 6 weeks to stay with relatives. Travel was by flight from Heathrow airport to Pakistan and by a short road journey to Rawalpindi. Mrs M. – the mother – as a guest, did no cooking on the holiday. The house which they were living in had a piped water supply, thought to be treated. There was no flush toilet but a commode was available and was emptied daily. All the children had gastro-enteritis symptoms for 2–3 days after arrival. Ru M. – a daughter – had the most severe illness and was treated by a local doctor. Diarrhoea in the three girls persisted on return to U.K. A faecal swab from Ru M. showed her to be excreting S. typhi (degraded Vi phage type). She was admitted to hospital. Faecal samples from the remaining members of the family were taken and examined for entero-pathogens. The father, Fa. M., who had not left Cardiff, had negative stools and remained free from infection. All other family members were excreting one or more enteropathogens, including a Campylobacter sp., three types of Sh. flexneri and one type of Sh. boydii. A subsequent faecal sample revealed that one of the male children, A.M., was excreting S. typhi phage type B2. The two typhoid infections were apparently unconnected.