We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The multiphase simulations are conducted with the kinetic-magnetohydrodynamics hybrid code MEGA to investigate the spatial and the velocity distributions of lost fast ions due to the Alfvén eigenmode (AE) bursts in the Large Helical Device plasmas. It is found that fast ions are lost along the divertor region with helical symmetry both before and during the AE burst except for the promptly lost particles. On the other hand, several peaks are present in the spatial distribution of lost fast ions along the divertor region. These peaks along the divertor region can be attributed to the deviation of the fast-ion orbits from the magnetic surfaces due to the grad-B and the curvature drifts. For comparison with the velocity distribution of lost fast ions measured by the fast-ion loss detector (FILD), the ‘numerical FILD’ which solves the Newton–Lorentz equation is constructed in the MEGA code. The velocity distribution of lost fast ions detected by the numerical FILD during AE burst is in good qualitative agreement with the experimental FILD measurements. During the AE burst, fast ions with high energy (100–180 keV) are detected by the numerical FILD, while co-going fast ions lost to the divertor region are the particles with energy lower than 50 keV.
The neutral beam (NB) fast ion confinement in the Large Helical Device (LHD) is studied for several full field (
$B_{t}\sim 2.75~\text{T}$
) magnetic configurations by a combination of neutron measurement and simulations. To investigate the NB fast ion confinement, we have performed a series of short-pulse NB injection experiments. The experiment results are analysed by the integrated code TASK3D-a. From this investigation, the effective particle diffusion coefficients of the tangential and perpendicular NBs are approximately
$D^{\text{eff}}\sim 0.1~\text{m}^{2}~\text{s}^{-1}$
and
$D^{\text{eff}}\sim 1~\text{m}^{2}~\text{s}^{-1}$
in the standard configuration. It is clarified that the NB fast ion confinement improves when the plasmas are shifted inward. Moreover, it is also found that the simulation, which considers the deuteron dilution effect due to the presence of impurity ions, can describe a neutron emission rate consistent with the measurement.
Measurements in the infrared wavelength domain allow direct assessment of the physical state and energy balance of cool matter in space, enabling the detailed study of the processes that govern the formation and evolution of stars and planetary systems in galaxies over cosmic time. Previous infrared missions revealed a great deal about the obscured Universe, but were hampered by limited sensitivity.
SPICA takes the next step in infrared observational capability by combining a large 2.5-meter diameter telescope, cooled to below 8 K, with instruments employing ultra-sensitive detectors. A combination of passive cooling and mechanical coolers will be used to cool both the telescope and the instruments. With mechanical coolers the mission lifetime is not limited by the supply of cryogen. With the combination of low telescope background and instruments with state-of-the-art detectors SPICA provides a huge advance on the capabilities of previous missions.
SPICA instruments offer spectral resolving power ranging from R ~50 through 11 000 in the 17–230 μm domain and R ~28.000 spectroscopy between 12 and 18 μm. SPICA will provide efficient 30–37 μm broad band mapping, and small field spectroscopic and polarimetric imaging at 100, 200 and 350 μm. SPICA will provide infrared spectroscopy with an unprecedented sensitivity of ~5 × 10−20 W m−2 (5σ/1 h)—over two orders of magnitude improvement over what earlier missions. This exceptional performance leap, will open entirely new domains in infrared astronomy; galaxy evolution and metal production over cosmic time, dust formation and evolution from very early epochs onwards, the formation history of planetary systems.
To assess the diagnostic role of mean platelet volume in tonsillitis with and without peritonsillar abscess.
Methods
Mean platelet volume and other laboratory data were retrospectively investigated.
Results
Mean platelet volume was significantly lower in the tonsillitis group (7.8 per cent ± 0.7 per cent) than in the control group (8.7 per cent ± 0.6 per cent; p < 0.0001), and it was significantly lower in the abscess group (7.5 per cent ± 0.6 per cent) than in the no abscess group (8.0 per cent ± 0.7 per cent; p = 0.0277). White blood cell counts and C-reactive protein levels were not significantly different between patients with an abscess and those without. The mean platelet volume cut-off values for the diagnosis of tonsillitis and peritonsillar abscess were 7.95 fl and 7.75 fl, respectively.
Conclusion
Our results suggest that a decreased mean platelet volume is associated with the development and severity of tonsillitis. This finding provides useful diagnostic information for physicians treating patients with tonsillitis.
Higher-Order Spectra (HOS) are used to characterise the nonlinear aeroelastic behaviour of a plunging and pitching 2-degree-of-freedom aerofoil system by diagnosing structural and/or aerodynamic nonlinearities via the nonlinear spectral content of the computed displacement signals. The nonlinear aeroelastic predictions are obtained from high-fidelity viscous fluid-structure interaction simulations. The power spectral, bi-spectral and tri-spectral densities are used to provide insight into the functional form of both freeplay and inviscid/viscous aerodynamic nonlinearities with the system displaying both low- and high-amplitude Limit Cycle Oscillation (LCO). It is shown that in the absence of aerodynamic nonlinearity (low-amplitude LCO) the system is characterised by cubic phase coupling only. Furthermore, when the amplitude of the oscillations becomes large, aerodynamic nonlinearities become prevalent and are characterised by quadratic phase coupling. Physical insights into the nonlinearities are provided in the form of phase-plane diagrams, pressure coefficient distributions and Mach number flowfield contours.
Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock, multi-organ failure, and high mortality. In Japan, appropriate notification measures based on the Infectious Disease Control law are mandatory for cases of STSS caused by β-haemolytic streptococcus. STSS is mainly caused by group A streptococcus (GAS). Although an average of 60–70 cases of GAS-induced STSS are reported annually, 143 cases were recorded in 2011. To determine the reason behind this marked increase, we characterized the emm genotype of 249 GAS isolates from STSS patients in Japan from 2010 to 2012 and performed antimicrobial susceptibility testing. The predominant genotype was found to be emm1, followed by emm89, emm12, emm28, emm3, and emm90. These six genotypes constituted more than 90% of the STSS isolates. The number of emm1, emm89, emm12, and emm28 isolates increased concomitantly with the increase in the total number of STSS cases. In particular, the number of mefA-positive emm1 isolates has escalated since 2011. Thus, the increase in the incidence of STSS can be attributed to an increase in the number of cases associated with specific genotypes.
We investigated electronic structure of one-dimensional biradical molecular chain which is constructed by exploiting the covalency between organic molecules of a diphenyl derivative of s-indacenodiphenalene (Ph2-IDPL). To control the crystallinity, we used gas deposition method. Ultraviolet photoelectron spectroscopy (UPS) revealed developed band structure with wide dispersion of the one-dimensional biradical molecular chain.
We carried out magnetohydrodynamic (MHD) simulations to reveal the formation mechanism of molecular towers observed in the central region of our galaxy. These molecular clouds can be formed by the interaction of magnetic tower jet with the interstellar gas. When the jet collides with dense HI clouds, the HI gas is compressed by the bow shock ahead of the jet. Since the density enhancement triggers the cooling instability because it increases the cooling rate, the shocked gas cools down and forms cold, dense gas. We carried out MHD simulations including the cooling. The magnetized jet which triggers the formation of the molecular column appears in global magnetohydrodynamic simulations of accretion disks, in which the magnetic loops emerging from the disk are twisted by the differential rotation between the footpoints of magnetic loops anchored to the disk. Numerical results indicate that the magnetic loops expand, and form a magnetic tower. When the ambient density is small, the propagation speed of the tower can be as large as the rotation speed of the disk. When the ambient density is high, the collision of the jet and the HI cloud forms dense molecular tower.
Electron spin resonance study of low-κ insulating layers reveals that from a defect perspective these materials resemble oxygen-rich silicon dioxide matrices. The films fabricated using chemical vapor deposition in combination with porogen technology also contain a considerable amount of residual carbon in the form of clusters. Furthermore, ion sputtering damage generates additional defects provisionally identified as dangling bonds in the silicon oxycarbide clusters. The density of these defects is found to increase with increasing porosity of the low-κ insulator. Nevertheless, a lower defect density may be attained if using a porogen-free self-assembly technology.
The material properties of two ultra low-k organic polymers are characterized for copper interconnect integration. The k-values are 2.2-2.3 for both. Compared to OSG materials of similar k-values, these polymers have lower porosity and smaller pore size, achieved using selfassembled chemistry. Both materials demonstrate excellent resistance to plasma damage: no water uptake was detected after exposure to selected etching plasmas. This characteristic, combined with the small pore size and low porosity, results in the successful integration of the organic low-ks in 80 nm spacing with no significant increase in the integrated k-values.
It is found that higher open porosity in polymer A is accompanied by higher leakage current, which is not however linked to lower dielectric breakdown lifetimes.
Hydrogen absorption in metallic nanoparticles was investigated by classical molecular dynamics (MD) simulation. We used a simple model composed of an isolated f.c.c. or b.c.c. nanoparticle of 1, 1.4, 2, 4, 6, 8 and 10 nm in diameter and surrounding hydrogen atoms. The simulated particle sizes are which correspond to about 50 to 44000 atoms. In the case of f.c.c. nanoparticles, atomic configuration with five-fold symmetries was observed in both hydrogenfree and hydrogenated particles smaller than 2 nm. The f.c.c. structure was maintained in larger particles than 4 nm with lattice deformation which varies with M-H interaction. The b.c.t. structure was observed in hydrogenated b.c.c. nanoparticles. Number of H atoms absorbed in a nanoparticle varies depending on particle size and M-H interaction: it increases with increasing particle size and M-H bond strength.
A new species, Chaoborus sampsera, is described from male and female adults collected from Papua Province in western New Guinea, Indonesia. Based on leg banding, wing pigmentation, and possession of a median paramere sclerite in males, the new species belongs to the Chaoborus “pallidus” group of Colless. Chaoborus sampsera is distinguished from other species of the “pallidus” group by the scimitar-shaped parameres. Although relationships among these Chaoborus species are unclear, there are morphological characters that support the “pallidus” group.
Plasma modification of SiOCH low-k films is analyzed by means of Molecular Mechanics. It is shown that the most probable mechanism of SiOCH modification in He plasma is removal of hydrogen atoms from CH3 groups. The change of Si–O–Si bond angles depends on the amount of the formed –CH2* (CHx) groups. During the followed exposure in NH3 plasma, NH2* radicals bind CHx groups with Si forming a –CH2– Si–O–Si–O–Si–O–Si– chain. The end of this chain gets bound to its beginning through NH2. This process is the reason of pore sealing.
Porous low-k dielectrics were studied to determine the changes of optical properties after various plasma treatments for development of scatterometry technique for evaluation of the trench/via sidewall plasma damage. The SiCOH porogen based low-k films were prepared by PE-CVD. The deposited and UV-cured low-k films have been damaged by striping O2Cl2, O2, NH3 and H2N2 based plasmas and CF4/CH2F2/Ar etching plasma. Blanket wafers were studied in this work for the simplicity of thin film optical model. The optical properties of the damaged low-k dielectrics are evaluated the using various angle spectroscopic ellipsometry in range from 2 to 9 eV. Multilayer optical model is applied to fit the measured quantities and the validity is supported by other techniques. The atomic concentration profiles of Si, C, O and H were stated by TOF-SIMS and changes in overall chemical composition were derived from FTIR. Toluene and water based ellipsometric porosimetry is involved to examine the porosity, pore interconnectivity and internal hydrophilicity.
Nanoscience: an area that promises new understanding of nature with the aid of rapid progress of nanotechnology. Nanotechnology: the use of nanoscience to build new technologies that will change the world. Nanoscience and Nanotechnology have captured the attention of the public, government, and corporations. How they will influence our lives depend on how we prepare ourselves, and our successors. Here we present a brief outline of the efforts being taken at Osaka University since 2004, in order to prepare our future scientists, engineers, and leaders in the rapidly flourishing trans-/multi-disciplinary field of Nanoscience and Nanotechnology.
Background and objectives: Sodium bicarbonate is the most physiological alkalinizing agent. The effect of a new bicarbonated Ringer's solution (BRS) containing Mg2+, on metabolic acidosis and serum magnesium abnormality were evaluated and compared with those of acetated Ringer's (ARS), lactated Ringer's (LRS) and Ringer's (RS) solutions in an experimental haemorrhagic shock model with dogs. Methods: Animals were randomly divided into six groups (n = 6 in each group), a sham-operated group, an operated group without infusion, and 4 operated groups with infusion (BRS, ARS, LRS and RS groups). Each RS was intravenously administered at 60 mL kg−1 h−1 for 1.5 h. Arterial blood gases, plasma electrolytes and cardiovascular parameters were analysed. Results: BRS significantly improved blood base excess values, which were decreased by blood-letting, faster and more markedly than did LRS and RS (BRS −6.3 ± 0.5 mEq L−1; LRS −9.2 ± 1.1 mEq L−1; RS −12.4 ± 1.0 mEq L−1 at the end of infusion). The alkalinizing effect of BRS tended to be better than that of ARS but not significantly so. The serum Mg2+ concentration was well-maintained by BRS as compared to other RS (BRS 1.5 ± 0.0 mg dL−1; ARS 1.2 ± 0.0 mg dL−1; LRS 1.1 ± 0.0 mg dL−1; RS 1.3 ± 0.1 mg dL−1, at the end of infusion). Conclusions: These results suggest that BRS is a suitable perioperative solution for metabolic acidosis and serum electrolyte balance among RS tested.
Background and objective: The exact change in circulating blood volume (BV) during general anaesthesia is still unknown because there is no standard method of evaluating BV. We evaluated the changes in BV by general anaesthesia using simple and easy estimation methods.
Methods: Fourteen patients scheduled for minor surgery under general anaesthesia were enrolled. Propofol and vecuronium bromide were used for the induction of anaesthesia, and anaesthesia was maintained with sevoflurane and nitrous oxide. Haematocrit (Hct), total protein concentration (TP), as well as colloid osmotic pressure (COP) measured using a colloid osmometer, were determined before anaesthesia, and 30, 60 and 90 min after the induction of general anaesthesia. BV was calculated using Allen's formula and the changes in Hct, TP and COP. The estimated BV was compared with directly measured BV using indocyanine green dilution method (BVICG).
Results: Hct, TP and COP significantly decreased after the induction of anaesthesia (Hct: 42.1–39.4%; TP: 7.3–6.9 g dL−1; COP: 23–19 mmHg). The calculated BV as well as BVICG significantly increased after induction of anaesthesia (calculated by COP: 4.13–5.03 L; BVICG: 4.54–5.56 L). The change rate in BV calculated by the change of COP was larger than other calculated BVs, and was approximated to the change rate in BVICG. After emergence from anaesthesia, all values tended to return to baseline.
Conclusions: General anaesthesia increases BV. The value of BV calculated from the change in COP was most changeable.
Void evolution during electromigration was studied by recording void nucleation, growth, and displacements at various intervals during thermal (240 °C) and electrical stress tests (2 × 106 amps/cm2) of Cu interconnects. Structural data was collected for various serially arranged line segment lengths and correlated with resistance and increases in resistance due to electromigration-induced thinning and voiding. These results allowed determination of void growth rates in Cu interconnects. Void nucleation and growth show a clear dependence on segment length. Void formation did not occur at the via/interconnect interface, which improved interconnect reliability by allowing extensive voiding before catastrophic failure.