Laboratory observations and numerical simulations reveal that, in addition to monopoles, dipoles and tripoles, yet another stable coherent vortex may emerge from unstable isolated circular vortices. This new vortex is the finite-amplitude result of the growth of an azimuthal wavenumber-3 perturbation. It consists of a triangular core of single-signed vorticity surrounded by three semicircular satellites of oppositely signed vorticity. The stability of this triangular vortex is analysed through a series of high-resolution numerical simulations and by an investigation of point-vortex models. This new compound vortex rotates about its centre and is stable to small perturbations. If perturbed strongly enough, it undergoes an instability in which two of the outer satellites merge, resulting in the formation of an axisymmetric tripole, which subsequently breaks down into either a pair of dipoles or a dipole plus a monopole. The growth of higher-azimuthal-wavenumber perturbations leads to the formation of more intricate compound vortices with cores in the shape of squares, pentagons, etc. However, numerical simulations show that these vortices are unstable, which agrees with results from point-vortex models.