We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An intermediate-depth (1751 m) ice core was drilled at the South Pole between 2014 and 2016 using the newly designed US Intermediate Depth Drill. The South Pole ice core is the highest-resolution interior East Antarctic ice core record that extends into the glacial period. The methods used at the South Pole to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the National Science Foundation Ice Core Facility (NSF-ICF), and the methods used to process and sample the ice at the NSF-ICF are described. The South Pole ice core exhibited minimal brittle ice, which was likely due to site characteristics and, to a lesser extent, to drill technology and core handling procedures.
Coronavirus disease 2019 personal protective equipment has been reported to affect communication in healthcare settings. This study sought to identify those challenges experimentally.
Method
Bamford–Kowal–Bench speech discrimination in noise performance of healthcare workers was tested under simulated background noise conditions from a variety of hospital environments. Candidates were assessed for ability to interpret speech with and without personal protective equipment, with both normal speech and raised voice.
Results
There was a significant difference in speech discrimination scores between normal and personal protective equipment wearing subjects in operating theatre simulated background noise levels (70 dB).
Conclusion
Wearing personal protective equipment can impact communication in healthcare environments. Efforts should be made to remind staff about this burden and to seek alternative communication paradigms, particularly in operating theatre environments.
Cold dissection is the most commonly used tonsillectomy technique, with low post-operative haemorrhage rates. Coblation is an alternative technique that may cause less pain, but could have higher post-operative haemorrhage rates.
Objective
This study evaluated the peri-operative outcomes in paediatric tonsillectomy patients by comparing coblation and cold dissection techniques.
Methods
A systematic review was conducted of all comparative studies of paediatric coblation and cold dissection tonsillectomy, up to December 2018. Any studies with adults were excluded. Outcomes such as pain, operative time, and intra-operative, primary and secondary haemorrhages were recorded.
Results
Seven studies contributed to the summative outcome. Coblation tonsillectomy appeared to result in less pain, less intra-operative blood loss (p < 0.01) and a shorter operative time (p < 0.01). There was no significant difference between the two groups for post-operative haemorrhage (p > 0.05).
Conclusion
The coblation tonsillectomy technique may offer better peri-operative outcomes when compared to cold dissection, and should therefore be offered in paediatric cases, before cold dissection tonsillectomy.
The U.S. Army uses universal preventives interventions for several negative outcomes (e.g. suicide, violence, sexual assault) with especially high risks in the early years of service. More intensive interventions exist, but would be cost-effective only if targeted at high-risk soldiers. We report results of efforts to develop models for such targeting from self-report surveys administered at the beginning of Army service.
Methods
21 832 new soldiers completed a self-administered questionnaire (SAQ) in 2011–2012 and consented to link administrative data to SAQ responses. Penalized regression models were developed for 12 administratively-recorded outcomes occurring by December 2013: suicide attempt, mental hospitalization, positive drug test, traumatic brain injury (TBI), other severe injury, several types of violence perpetration and victimization, demotion, and attrition.
Results
The best-performing models were for TBI (AUC = 0.80), major physical violence perpetration (AUC = 0.78), sexual assault perpetration (AUC = 0.78), and suicide attempt (AUC = 0.74). Although predicted risk scores were significantly correlated across outcomes, prediction was not improved by including risk scores for other outcomes in models. Of particular note: 40.5% of suicide attempts occurred among the 10% of new soldiers with highest predicted risk, 57.2% of male sexual assault perpetrations among the 15% with highest predicted risk, and 35.5% of female sexual assault victimizations among the 10% with highest predicted risk.
Conclusions
Data collected at the beginning of service in self-report surveys could be used to develop risk models that define small proportions of new soldiers accounting for high proportions of negative outcomes over the first few years of service.
Despite a flood of discoveries over the last ~ 20 years, our knowledge of the exoplanet population is incomplete owing to a gap between the sensitivities of different detection techniques. However, a census of exoplanets at all separations from their host stars is essential to fully understand planet formation mechanisms. Microlensing offers an effective way to bridge the gap around 1–10 AU and is therefore one of the major science goals of the Wide Field Infrared Survey Telescope (WFIRST) mission. WFIRST’s survey of the Galactic Bulge is expected to discover ~ 20,000 microlensing events, including ~ 3000 planets, which represents a substantial data analysis challenge with the modeling software currently available. This paper highlights areas where further work is needed. The community is encouraged to join new software development efforts aimed at making the modeling of microlensing events both more accessible and rigorous.
Although interventions exist to reduce violent crime, optimal implementation requires accurate targeting. We report the results of an attempt to develop an actuarial model using machine learning methods to predict future violent crimes among US Army soldiers.
Method.
A consolidated administrative database for all 975 057 soldiers in the US Army in 2004–2009 was created in the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). Of these soldiers, 5771 committed a first founded major physical violent crime (murder-manslaughter, kidnapping, aggravated arson, aggravated assault, robbery) over that time period. Temporally prior administrative records measuring socio-demographic, Army career, criminal justice, medical/pharmacy, and contextual variables were used to build an actuarial model for these crimes separately among men and women using machine learning methods (cross-validated stepwise regression, random forests, penalized regressions). The model was then validated in an independent 2011–2013 sample.
Results.
Key predictors were indicators of disadvantaged social/socioeconomic status, early career stage, prior crime, and mental disorder treatment. Area under the receiver-operating characteristic curve was 0.80–0.82 in 2004–2009 and 0.77 in the 2011–2013 validation sample. Of all administratively recorded crimes, 36.2–33.1% (male-female) were committed by the 5% of soldiers having the highest predicted risk in 2004–2009 and an even higher proportion (50.5%) in the 2011–2013 validation sample.
Conclusions.
Although these results suggest that the models could be used to target soldiers at high risk of violent crime perpetration for preventive interventions, final implementation decisions would require further validation and weighing of predicted effectiveness against intervention costs and competing risks.
The Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS) has found that the proportional elevation in the US Army enlisted soldier suicide rate during deployment (compared with the never-deployed or previously deployed) is significantly higher among women than men, raising the possibility of gender differences in the adverse psychological effects of deployment.
Method
Person-month survival models based on a consolidated administrative database for active duty enlisted Regular Army soldiers in 2004–2009 (n = 975 057) were used to characterize the gender × deployment interaction predicting suicide. Four explanatory hypotheses were explored involving the proportion of females in each soldier's occupation, the proportion of same-gender soldiers in each soldier's unit, whether the soldier reported sexual assault victimization in the previous 12 months, and the soldier's pre-deployment history of treated mental/behavioral disorders.
Results
The suicide rate of currently deployed women (14.0/100 000 person-years) was 3.1–3.5 times the rates of other (i.e. never-deployed/previously deployed) women. The suicide rate of currently deployed men (22.6/100 000 person-years) was 0.9–1.2 times the rates of other men. The adjusted (for time trends, sociodemographics, and Army career variables) female:male odds ratio comparing the suicide rates of currently deployed v. other women v. men was 2.8 (95% confidence interval 1.1–6.8), became 2.4 after excluding soldiers with Direct Combat Arms occupations, and remained elevated (in the range 1.9–2.8) after adjusting for the hypothesized explanatory variables.
Conclusions
These results are valuable in excluding otherwise plausible hypotheses for the elevated suicide rate of deployed women and point to the importance of expanding future research on the psychological challenges of deployment for women.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a major wheat disease that can inflict yield losses of up to 70% on susceptible varieties under favourable environmental conditions. The timely identification of plant genetic resources likely to possess novel resistance to this disease would facilitate the rapid development of resistant wheat varieties. The focused identification of germplasm strategy (FIGS) approach was used to predict stripe rust resistance in a collection of wheat landraces conserved at ICARDA genebank. Long-term climate data for the collection sites, from which these accessions originated and stripe rust evaluation scores for one group of accessions were presented to three different non-linear models to explore the trait×collection site environment interactions. Patterns in the data detected by the models were used to predict stripe rust resistance in a second and different set of accessions. The results of the prediction were then tested against actual evaluation scores of the disease in the field. The study mimics the real scenario where requests are made to plant genetic resources curators to provide accessions that are likely to possess variation for specific traits such as disease resistance.
The models used were able to identify stripe rust-resistant accessions with a high degree of accuracy. Values as high as 0·75 for area under the curve and 0·45 for Kappa statistics, which quantify the agreement between the models’ predictions and the curator's disease scores, were achieved. This demonstrates a strong environmental component in the geographic distribution of resistance genes and therefore supports the theoretical basis for FIGS. It is argued that FIGS will improve the rate of gene discovery and efficiency of mining genetic resource collections for adaptive traits by reducing the number of accessions that are normally required for evaluation to identify such variation.
Long-term fire histories provide insight into the effects of climate, ecology and humans on fire activity; they can be generated using accumulation rates of charcoal and soot black carbon in lacustrine sediments. This study uses both charcoal and black carbon, and other paleoclimate indicators from Lake Kinneret (Sea of Galilee), Israel, to reconstruct late Holocene variations in biomass burning and aridity. We compare the fire history data with a regional biomass-burning reconstruction from 18 different charcoal records and with pollen, climate, and population data to decipher the relative impacts of regional climate, vegetation changes, and human activity on fire. We show a long-term decline in fire activity over the past 3070 years, from high biomass burning ~ 3070–1750 cal yr BP to significantly lower levels after ~ 1750 cal yr BP. Human modification of the landscape (e.g., forest clearing, agriculture, settlement expansion and early industry) in periods of low to moderate precipitation appears to have been the greatest cause of high biomass burning during the late Holocene in southern Levant, while wetter climate apparently reduced fire activity during periods of both low and high human activity.
n-Alkane biomarker distributions in sediments from Swamp Lake (SL), in the central Sierra Nevada of California (USA), provide evidence for an increase in mean lake level ~ 3000 yr ago, in conjunction with widespread climatic change inferred from marine and continental records in the eastern North Pacific region. Length distributions of n-alkane chains in modern plants growing at SL were determined and compared to sedimentary distributions in a core spanning the last 13 ka. As a group, submerged and floating aquatic plants contained high proportions of short chain lengths (< nC25) compared to emergent, riparian and upland terrestrial species, for which chain lengths > nC27 were dominant. Changes in the sedimentary n-alkane distribution over time were driven by variable inputs from plant sources in response to changing lake level, sedimentation and plant community composition. A shift toward shorter chain lengths (nC21,nC23) occurred between 3.1 and 2.9 ka and is best explained by an increase in the abundance of aquatic plants and the availability of shallow-water habitat in response to rising lake level. The late Holocene expansion of SL following a dry mid-Holocene is consistent with previous evidence for increased effective moisture and the onset of wetter conditions in the Sierra Nevada between 4.0 and 3.0 ka.
Four accelerator mass spectrometry (AMS) facilities undertook an interlaboratory exercise designed to examine the reliability and reproducibility of radiocarbon determinations on bone by dating a sample of elk (Alces alces) from Miesenheim IV. This specimen is derived from a secure geological context directly beneath the Laacher See tephra, which provides a precise terminus ante quern of ∼11,060 yr BP (∼13,050 cal yr BP). Regrettably, the results of the intercomparison exercise were complicated by evident contamination of the bone sample by exogenous organic material. This contaminant, probably humic acid, resulted in a wide span of ages (10,010 ± 30 to 11,100 ± 45 BP). The only method that yielded an accurate determination, consistent with the age of the tephra, was Oxford's single amino acid technique, which targets hydroxyproline. An acid hydrolysis step seems to have been crucial in breaking the bonds between the bone collagen and the contaminant.
Depressive symptoms may increase the risk of progressing from mild cognitive impairment (MCI) to dementia. Consumption of n-3 PUFA may alleviate both cognitive decline and depression. The aim of the present study was to investigate the benefits of supplementing a diet with n-3 PUFA, DHA and EPA, for depressive symptoms, quality of life (QOL) and cognition in elderly people with MCI. We conducted a 6-month double-blind, randomised controlled trial. A total of fifty people aged >65 years with MCI were allocated to receive a supplement rich in EPA (1·67 g EPA+0·16 g DHA/d; n 17), DHA (1·55 g DHA+0·40 g EPA/d; n 18) or the n-6 PUFA linoleic acid (LA; 2·2 g/d; n 15). Treatment allocation was by minimisation based on age, sex and depressive symptoms (Geriatric Depression Scale, GDS). Physiological and cognitive assessments, questionnaires and fatty acid composition of erythrocytes were obtained at baseline and 6 months (completers: n 40; EPA n 13, DHA n 16, LA n 11). Compared with the LA group, GDS scores improved in the EPA (P = 0·04) and DHA (P = 0·01) groups and verbal fluency (Initial Letter Fluency) in the DHA group (P = 0·04). Improved GDS scores were correlated with increased DHA plus EPA (r 0·39, P = 0·02). Improved self-reported physical health was associated with increased DHA. There were no treatment effects on other cognitive or QOL parameters. Increased intakes of DHA and EPA benefited mental health in older people with MCI. Increasing n-3 PUFA intakes may reduce depressive symptoms and the risk of progressing to dementia. This needs to be investigated in larger, depressed samples with MCI.
Gravitational microlensing is a well established and unique field of time-domain astrophysics. For two decades microlensing surveys have been regularly observing millions of stars to detect elusive events that follow a characteristic Paczyński lightcurve. This workshop reviewed the current state of the field, and covered the major topics related to microlensing: searches for extrasolar planets, and studies of dark matter. There were also discussions of issues relating to the organisation of follow-up observations for microlensing, as well as serendipitous scientific outcomes resulting from extensive microlensing data.
Las Cumbres Observatory Global Telescope Network (LCOGT) is currently building a new kind of general-purpose astronomical facility: a fully robotic network of telescopes of 2m, 1m and 0.4m apertures and homogeneous instrumentation. A pan-network approach to scheduling (rather than per individual telescope) offers redundancy in the event of poor weather or technical failure, as well as the ability to observe a target around the clock. Here we describe the network design and instrumentation under development, together with the main science programmes already being lead by LCOGT staff.
We present the first reported case of persistent, posterior triangle lymphadenopathy in a child, caused by Castleman's disease.
Case report:
A seven-year-old boy presented with a painless swelling in the posterior triangle of his left neck, with no compression of the surrounding structures. A histological diagnosis of Castleman's disease was made. Eventual treatment was by complete excision. At six-month follow up, there were no signs of recurrence.
Conclusion:
The causes of persistent cervical lymphadenopathy in children are many. Most are not significant, but some are life-threatening. Castleman's disease should be considered as a possible diagnosis in persistent childhood lymphadenopathy.
There are now several large photometric surveys scanning millions of stellar light-curves for signs of planetary transits. All produce large candidate lists with a high false alarm rate, so that further observations are required to confirm new detections. One such survey, SuperWASP, produced ~150 candidates during the 2007–2008 season. Here we describe our campaign to follow-up 86 of these candidates using the robotic facilities of Las Cumbres Observatory Global Telescope Network and the Tenagra-II robotic telescope in Arizona. The aim of these observations was to eliminate false positives as far as possible ahead of spectroscopic follow-up and to provide additional photometry to help characterise the surviving targets.
The WASP consortium is conducting an ultra-wide field survey of stars between 8–15 mag from both hemispheres. Our primary science goal is to detect extra-solar ‘hot-Jupiter’-type planets that eclipse (or transit) bright host stars and for which further detailed investigation will be possible. We summarize the design of the SuperWASP instruments and describe the first results from our northern station SW-N, sited in La Palma, Canary Islands. Our second station, which began operations this year, is located at the South African Astronomical Observatory. Between April and September, 2004, SW-N continuously observed ~6.7 million stars. The consortium's custom-written, fully automated data reduction pipeline has been used to process these data, and the information is now stored in the project archive, held by the Leicester database and archive service (LEDAS). We have applied a sophisticated, automated algorithm to identify the low-amplitude (~0.01 mag), brief (~few hours) signatures of transiting exoplanets. In addition, we have assessed each candidate in the light of all available catalogue information in order to reject data artefacts and astrophysical false positive detections. The highest priority candidates are currently being subjected to further observations in order to select the true planets. Once the exoplanets are confirmed, a host of exciting opportunities are open to us. In this paper, we describe two techniques that exploit the transits in order to detect other objects within the same system. The first involves determining precise epochs for a sequence of transit events in order to detect the small timing variations caused by the gravitational pull of other planets in the same system. The second method employs ultra-high precision photometry of the transits to detect the deviations caused by the presence of exoplanetary moons. Both of these techniques are capable of detecting objects the size of terrestrial planets.
OLEDs are an ideal technology for electronic display applications. They are fabricated by depositing very thin films of organic materials at low temperatures (<100°C) to form bright, vivid power efficient self-emissive light producing elements with fast response times that can be grown on a variety of large area substrates such as glass, plastic or metal foil. These properties make OLEDs ideally suited to enable high information content flexible displays. In particular, the application of phosphorescent OLEDs leads to very low power consumption displays – a key requirement for mobile applications. In this paper we outline our progress towards developing low power consumption, active-matrix flexible OLED (FOLED™) displays. Our work is focused on integrating three critical enabling technologies: high efficiency long-lived top emission phosphorescent OLED (PHOLED™) device technology, flexible active-matrix backplanes, and thin film encapsulation.