We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
To examine associations between diet and risk of developing gastro-oesophageal reflux disease (GERD).
Design:
Prospective cohort with a median follow-up of 15·8 years. Baseline diet was measured using a FFQ. GERD was defined as self-reported current or history of daily heartburn or acid regurgitation beginning at least 2 years after baseline. Sex-specific logistic regressions were performed to estimate OR for GERD associated with diet quality scores and intakes of nutrients, food groups and individual foods and beverages. The effect of substituting saturated fat for monounsaturated or polyunsaturated fat on GERD risk was examined.
Setting:
Melbourne, Australia.
Participants:
A cohort of 20 926 participants (62 % women) aged 40–59 years at recruitment between 1990 and 1994.
Results:
For men, total fat intake was associated with increased risk of GERD (OR 1·05 per 5 g/d; 95 % CI 1·01, 1·09; P = 0·016), whereas total carbohydrate (OR 0·89 per 30 g/d; 95 % CI 0·82, 0·98; P = 0·010) and starch intakes (OR 0·84 per 30 g/d; 95 % CI 0·75, 0·94; P = 0·005) were associated with reduced risk. Nutrients were not associated with risk for women. For both sexes, substituting saturated fat for polyunsaturated or monounsaturated fat did not change risk. For both sexes, fish, chicken, cruciferous vegetables and carbonated beverages were associated with increased risk, whereas total fruit and citrus were associated with reduced risk. No association was observed with diet quality scores.
Conclusions:
Diet is a possible risk factor for GERD, but food considered as triggers of GERD symptoms might not necessarily contribute to disease development. Potential differential associations for men and women warrant further investigation.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with
$\sim$
15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination
$+41^\circ$
made over a 288-MHz band centred at 887.5 MHz.
Stressful experiences affect biological stress systems, such as the hypothalamic–pituitary–adrenal (HPA) axis. Life stress can potentially alter regulation of the HPA axis and has been associated with poorer physical and mental health. Little, however, is known about the relative influence of stressors that are encountered at different developmental periods on acute stress reactions in adulthood. In this study, we explored three models of the influence of stress exposure on cortisol reactivity to a modified version of the Trier Social Stress Test (TSST) by leveraging 37 years of longitudinal data in a high-risk birth cohort (N = 112). The cumulative stress model suggests that accumulated stress across the lifespan leads to dysregulated reactivity, whereas the biological embedding model implicates early childhood as a critical period. The sensitization model assumes that dysregulation should only occur when stress is high in both early childhood and concurrently. All of the models predicted altered reactivity, but do not anticipate its exact form. We found support for both cumulative and biological embedding effects. However, when pitted against each other, early life stress predicted more blunted cortisol responses at age 37 over and above cumulative life stress. Additional analyses revealed that stress exposure in middle childhood also predicted more blunted cortisol reactivity.
While early gendered messages mold children's expectations about the world, we know relatively little about the depictions of women in politics and exposure to gender stereotypes in elementary social studies curricula. In this article, we examine the coverage of political leaders in the children's magazine TIME for Kids, a source commonly found in elementary school classrooms. Coding all political content from this source over six years, we evaluate the presence of women political leaders and rate whether the leaders are described as possessing gender-stereotypic traits. Our results show that although TIME for Kids covers women leaders in greater proportion than their overall representation in politics, the content of the coverage contains gendered messages that portray politics as a stereotypically masculine field. We show that gendered traits are applied differently to men and to women in politics: feminine and communal traits are more likely to be applied to women leaders, while men and women are equally described as having masculine and agentic traits. Portrayals of women political leaders in stereotype-congruent ways is problematic because early messages influence children's views of gender roles.
This study evaluated the efficacy of a family-centered preventive intervention, the Family Check-Up (FCU), delivered as an online, eHealth model to middle school families. To increase accessibility of family-centered prevention in schools, we adapted the evidence-based FCU to an online format, with the goal of providing a model of service delivery that is feasible, given limited staffing and resources in many schools. Building on prior research, we randomly assigned participants to waitlist control (n = 105), FCU Online as a web-based intervention (n = 109), and FCU Online with coaching support (n = 108). We tested the effects of the intervention on multiple outcomes, including parental self-efficacy, child self-regulation, and child behavior, in this registered clinical trial (NCT03060291). Families engaged in the intervention at a high rate (72% completed the FCU assessment) and completed 3-month posttest assessments with good retention (94% retained). Random assignment to the FCU Online with coaching support was associated with reduced emotional problems for children (p = .003, d = −0.32) and improved parental confidence and self-efficacy (p = .018, d = 0.25) when compared with waitlist controls. Risk moderated effects: at-risk youth showed stronger effects than did those with minimal risk. The results have implications for online delivery of family-centered interventions in schools.
We have observed the G23 field of the Galaxy AndMass Assembly (GAMA) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) in its commissioning phase to validate the performance of the telescope and to characterise the detected galaxy populations. This observation covers ~48 deg2 with synthesised beam of 32.7 arcsec by 17.8 arcsec at 936MHz, and ~39 deg2 with synthesised beam of 15.8 arcsec by 12.0 arcsec at 1320MHz. At both frequencies, the root-mean-square (r.m.s.) noise is ~0.1 mJy/beam. We combine these radio observations with the GAMA galaxy data, which includes spectroscopy of galaxies that are i-band selected with a magnitude limit of 19.2. Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry is used to determine which galaxies host an active galactic nucleus (AGN). In properties including source counts, mass distributions, and IR versus radio luminosity relation, the ASKAP-detected radio sources behave as expected. Radio galaxies have higher stellar mass and luminosity in IR, optical, and UV than other galaxies. We apply optical and IR AGN diagnostics and find that they disagree for ~30% of the galaxies in our sample. We suggest possible causes for the disagreement. Some cases can be explained by optical extinction of the AGN, but for more than half of the cases we do not find a clear explanation. Radio sources aremore likely (~6%) to have an AGN than radio quiet galaxies (~1%), but the majority of AGN are not detected in radio at this sensitivity.
The Commensal Real-time Australian Square Kilometre Array Pathfinder Fast Transients survey is the first extensive astronomical survey using phased array feeds. Since January 2017, it has been searching for fast radio bursts in fly’s eye mode. Here, we present a calculation of the sensitivity and total exposure of the survey that detected the first 20 of these bursts, using the pulsars B1641-45 and B0833-45 as calibrators. The beamshape, antenna-dependent system noise, and the effects of radio-frequency interference and fluctuations during commissioning are quantified. Effective survey exposures and sensitivities are calculated as a function of the source counts distribution. Statistical ‘stat’ and systematics ‘sys’ effects are treated separately. The implied fast radio burst rate is significantly lower than the 37 sky−1 day−1 calculated using nominal exposures and sensitivities for this same sample by Shannon et al. (2018). At the Euclidean (best-fit) power-law index of −1.5 (−2.2), the rate is
$12.7_{-2.2}^{+3.3}$
(sys) ± 3.6 (stat) sky−1 day−1 (
$20.7_{-1.7}^{+2.1}$
(sys) ± 2.8 (stat) sky−1 day−1) above a threshold of 56.6 ± 6.6(sys) Jy ms (40.4 ± 1.2(sys) Jy ms). This strongly suggests that these calculations be performed for other FRB-hunting experiments, allowing meaningful comparisons to be made between them.
The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (~2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
Fetal growth restriction (FGR) and preterm birth are frequent co-morbidities, both are independent risks for brain injury. However, few studies have examined the mechanisms by which preterm FGR increases the risk of adverse neurological outcomes. We aimed to determine the effects of prematurity and mechanical ventilation (VENT) on the brain of FGR and appropriately grown (AG, control) lambs. We hypothesized that FGR preterm lambs are more vulnerable to ventilation-induced acute brain injury. FGR was surgically induced in fetal sheep (0.7 gestation) by ligation of a single umbilical artery. After 4 weeks, preterm lambs were euthanized at delivery or delivered and ventilated for 2 h before euthanasia. Brains and cerebrospinal fluid (CSF) were collected for analysis of molecular and structural indices of early brain injury. FGRVENT lambs had increased oxidative cell damage and brain injury marker S100B levels compared with all other groups. Mechanical ventilation increased inflammatory marker IL-8 within the brain of FGRVENT and AGVENT lambs. Abnormalities in the neurovascular unit and increased blood–brain barrier permeability were observed in FGRVENT lambs, as well as an altered density of vascular tight junctions markers. FGR and AG preterm lambs have different responses to acute injurious mechanical ventilation, changes which appear to have been developmentally programmed in utero.
Hearing loss can impair effective communication between caregivers and individuals with cognitive impairment. However, hearing loss is not often measured or addressed in care plans for these individuals. The aim of this study is to measure the prevalence of hearing loss and the utilization of hearing aids in a sample of individuals with cognitive impairment in a tertiary care memory clinic.
Methods:
A retrospective review of 133 charts of individuals >50 years who underwent hearing assessment at a tertiary care memory clinic over a 12-month period (June 2014–June 2015) was undertaken. Using descriptive statistics, the prevalence of hearing loss was determined and associations with demographic variables, relevant medical history, cognitive status, and hearing aid utilization were investigated.
Results:
Results indicate that hearing loss is highly prevalent among this sample of cognitively impaired older adults. Sixty percent of the sample had at least a mild hearing loss in the better hearing ear. Among variables examined, age, MMSE, and medical history of diabetes were strongly associated with hearing impairment. Hearing aid utilization increased in concordance with severity of hearing loss, from 9% to 54% of individuals with a mild or moderate/severe hearing loss, respectively.
Conclusions:
Hearing loss is highly prevalent among older adults with cognitive impairment. Despite high prevalence of hearing loss, hearing aid utilization remains low. Our study highlights the importance of hearing evaluation and rehabilitation as part of the cognitive assessment and care management plan in this vulnerable population.
We describe the performance of the Boolardy Engineering Test Array, the prototype for the Australian Square Kilometre Array Pathfinder telescope. Boolardy Engineering Test Array is the first aperture synthesis radio telescope to use phased array feed technology, giving it the ability to electronically form up to nine dual-polarisation beams. We report the methods developed for forming and measuring the beams, and the adaptations that have been made to the traditional calibration and imaging procedures in order to allow BETA to function as a multi-beam aperture synthesis telescope. We describe the commissioning of the instrument and present details of Boolardy Engineering Test Array’s performance: sensitivity, beam characteristics, polarimetric properties, and image quality. We summarise the astronomical science that it has produced and draw lessons from operating Boolardy Engineering Test Array that will be relevant to the commissioning and operation of the final Australian Square Kilometre Array Path telescope.
Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to ‘scan the horizon’ to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consultation was a fundamental principle for the development of a collective, international view of the most important future directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific questions through structured debate, discussion, revision and voting. Questions were clustered into seven topics: i) Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world, iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond, and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require innovative experimental designs, novel applications of technology, invention of next-generation field and laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples. Sustained year-round access to Antarctica and the Southern Ocean will be essential to increase winter-time measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the Earth System, and provide predictions at spatial and temporal resolutions useful for decision making. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential as no scientist, programme or nation can realize these aspirations alone.
Mid-infrared (MIR) quasar spectra exhibit a suite of emission features including high ionization coronal lines from the narrow line region (NLR) illuminated by the ionizing continuum, and hot dust features from grains, as well as polycyclic aromatic hydrocarbons (PAH) features from star formation in the host galaxy. Few features are detected in most spectra because of typically low signal-to-noise ratio (S/N) data. By generating spectral composites in three different luminosity bins from over 180 Spitzer Ifnfrared Spectrograph (IRS) observations, we boost the S/N and reveal important features in the complex spectra. We detect high-ionization, forbidden emission lines in all templates, PAH features in all but the most luminous objects, and broad silicate and graphite features in emission whose strength increases relative to the continuum with luminosity. We find that the intrinsic quasar spectrum for all luminosity templates is consistent, and the differences in the spectra can be explained by host galaxy contamination in the lower luminosity templates. We also posit that star formation may be active in most quasar host galaxies, but the spectral features of star formation are only detectable if the quasar is faint.