We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To explore the characteristics of the mitochondrial genome (mitogenome) of the squeaking silkmoths Rhodinia, a genus of wild silkmoths in the family Saturniidae of Lepidoptera, and reveal phylogenetic relationships, the mitogenome of Rhodinia fugax Butler was determined. This wild silkmoth spins a green cocoon that has potential significance in sericulture, and exhibits a unique feature that its larvae can squeak loudly when touched. The mitogenome of R. fugax is a circular molecule of 15,334 bp long and comprises 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and an A + T-rich region, consistent with previous observations of Saturniidae species. The 370-bp A + T-rich region of R. fugax contains no tandem repeat elements and harbors several features common to the Bombycidea insects, but microsatellite AT repeat sequence preceded by the ATTTA motif is not present. Mitogenome-based phylogenetic analysis shows that R. fugax belongs to Attacini, instead of Saturniini. This study presents the first mitogenome for Rhodinia genus.
Nutritional Risk Screening index is a standard tool to assess nutritional risk, but epidemiological data are scarce on controlling nutritional status (CONUT) as a prognostic marker in acute haemorrhagic stroke (AHS). We aimed to explore whether the CONUT may predict a 3-month functional outcome in AHS. In total, 349 Chinese patients with incident AHS were consecutively recruited, and their malnutrition risks were determined using a high CONUT score of ≥ 2. The cohort patients were divided into high-CONUT (≥ 2) and low-CONUT (< 2) groups, and primary outcomes were a poor functional prognosis defined as the modified Rankin Scale (mRS) score of ≥ 3 at post-discharge for 3 months. Odds ratios (OR) with 95 % confidence intervals (CI) for the poor functional prognosis at post-discharge were estimated by using a logistic analysis with additional adjustments for unbalanced variables between the high-CONUT and low-CONUT groups. A total of 328 patients (60·38 ± 12·83 years; 66·77 % male) completed the mRS assessment at post-discharge for 3 months, with 172 patients at malnutrition risk at admission and 104 patients with a poor prognosis. The levels of total cholesterol and total lymphocyte counts were significantly lower in high-CONUT patients than low-CONUT patients (P = 0·012 and < 0·001, respectively). At 3-month post discharge, there was a greater risk for the poor outcome in the high-CONUT compared with the low-CONUT patients at admission (OR: 2·32, 95 % CI: 1·28, 4·17). High-CONUT scores independently predict a 3-month poor prognosis in AHS, which helps to identify those who need additional nutritional managements.
In October 2015, the Chinese Government announced that the one-child policy had finally been replaced by a universal two-child policy. China’s universal two-child policy is highly significant because, for the first time in 36 years, no one in an urban city is restricted to having just one child. This cross-sectional study was conducted to explore future fertility intentions and factors influencing individual reproductive behaviour (whether to have two children) in Dalian City. A total of 1370 respondents were interviewed. The respondents’ mean ideal number of children was only 1.73, and urban respondents’ sex preference was symmetrical. A total of 19.0% of the respondents were unmarried, 64.5% were married and had childbearing experience and only 6.3% of married respondents had two children. Among the 1370 participants, 30.4% stated that they would have a second child, while 69.6% refused to have a second child in the future. Binary logistic regression analysis (Model 1) showed that the following characteristics were associated with having only one child in the future: being female, being older, having a lower education level, being born in Dalian, having a lower family income and reporting one child as the ideal number of children. Model 2 (comprising only respondents with childbearing experience) showed that respondents who were female, had a lower family income and were unable to obtain additional financial support from parents were more likely to intend to stick at one child. In addition, respondents’ ideal number of children and childbearing experiences had a significant influence on future fertility intentions. These results suggest that fertility intentions and reproductive behaviours are still below those needed for replacement level fertility in Dalian City. China’s policymakers should pay more attention to these factors (socioeconomic characteristics, economic factors, desired number of children and childbearing experiences) and try to increase individual reproductive behaviour.
As for the efficient dye-sensitized solar cells (DSSCs), one of the important goals is to increase the light harvesting efficiency to further improve the photoelectric conversion efficiency (PCE). The excellent photoanode materials should possess a uniform porous structure, a large surface area, high crystallinity, and good stability. Herein, the porous TiO2 electrode (named as S-1.5) with the above merits had been prepared by the simple template-assisted method with camphene as the pore-forming reagent. The surface area of the porous TiO2 electrode can be tailored by introducing the amount of camphene. The porous TiO2 layer with the optimal surface area directly adhered on the top of the ultra-thin P25 dense layer had been constructed and this unique electrode with a “double layers structure”, which named as S-1.5/P25. When DSSCs assembled with this photoanode, a desirable PCE of 8.31% had been achieved, which was obviously higher than that of the commercial P25 (7.62%) in parallel. The improved PCE can be attributed to the improved utilization of sunlight, the facilitated photo-generated electron transfer, and the reduced interface resistance. Meanwhile, the related characterization including electrochemical impedance spectroscopy, intensity-modulated photovoltage spectroscopy, and intensity-modulated photocurrent spectroscopy was characterized to explore the possible mechanism.
Synaptotagmin 1 (Syt1) is an abundant and important presynaptic vesicle protein that binds Ca2+ for the regulation of synaptic vesicle exocytosis. Our previous study reported its localization and function on spindle assembly in mouse oocyte meiotic maturation. The present study was designed to investigate the function of Syt1 during mouse oocyte activation and subsequent cortical granule exocytosis (CGE) using confocal microscopy, morpholinol-based knockdown and time-lapse live cell imaging. By employing live cell imaging, we first studied the dynamic process of CGE and calculated the time interval between [Ca2+]i rise and CGE after oocyte activation. We further showed that Syt1 was co-localized to cortical granules (CGs) at the oocyte cortex. After oocyte activation with SrCl2, the Syt1 distribution pattern was altered significantly, similar to the changes seen for the CGs. Knockdown of Syt1 inhibited [Ca2+]i oscillations, disrupted the F-actin distribution pattern and delayed the time of cortical reaction. In summary, as a synaptic vesicle protein and calcium sensor for exocytosis, Syt1 acts as an essential regulator in mouse oocyte activation events including the generation of Ca2+ signals and CGE.
We examine how organizational form affects corporate payouts. Conglomerates pay out more than pure plays in both cash dividends and total payouts (cash dividends plus share repurchases). Furthermore, their payouts are more sensitive to cash flows compared to pure-play firms. The sensitivity of payouts to cash flow increases as the cross-segment correlation in a conglomerate decreases. Corporate payouts increase after mergers and acquisitions (M&As), especially among M&As in which acquirers and targets are less correlated. These results suggest that the coinsurance among different divisions of a conglomerate allows them to pay out more cash flow to their shareholders than pure-play firms.
We report a new pulsed chemical vapor deposition (PCVD) process to deposit nickel (Ni) and nickel carbide (Ni3Cx) thin films, using bis(1,4-di-tert-butyl-1,3-diazabutadienyl)nickel(II) precursor and either H2 gas or H2 plasma as the coreactant, at a temperature from 140 to 250 °C. All the PCVD films are fairly pure with low levels of N and O impurities. The films deposited with H2 gas at ≤200 °C are faced centered cubic-phase Ni metal films with low C content; but at ≥220 °C, another phase of rhombohedral Ni3C is formed and the C content increases. However, when H2 plasma is used, the films are always in rhombohedral Ni3C phase for the entire temperature range.
Late Carboniferous magmatism in the Chinese Altai provides an important view of geodynamic processes active during crustal growth in the Central Asian Orogenic Belt (CAOB). In this study, five representative peraluminous granite plutons from the Chinese Altai were selected for systematic geochronological, geochemical and Sr–Nd–Hf isotopic analyses (Table 1). These granites were emplaced between 449 and 327 Ma in an active subduction zone, and have moderate to high SiO2 (66.54–76.13 wt%), moderate Na2O+K2O (6.27–7.66 wt%), and high Al2O3 contents (12.43–16.18 wt%). All granite samples in this study showed significant decoupling of the Nd and Hf isotope systems. Results show negative εNd(t) values (−3.3 to −0.9), and predominantly positive εHf(t) values (+0.24 to +8.01, n=57) except for a few negative εHf(t) values (−7.44 to −0.03, n=9), high Mg# values (28.69–53.33), high Nd/Hf ratios (4.26–43.57), and enrichment of large-ion lithophile elements (LILEs; e.g. Pb, Th, and U), suggesting that the granites were derived from the partial melting of oceanic sediments and the associated mantle wedge, with fractionation of plagioclase, K-feldspar and biotite. In situ zircon Hf isotopic analyses yield negative εHf(t) values from −30.6 to −13.7 for the zircon xenocrysts. The U–Pb ages and Hf isotopic ratios of these zircon xenocrysts were probably inherited from oceanic sediments. Zircon saturation temperatures suggest that these peraluminous granites were emplaced at 537–765°C. We propose that: (1) the Nd isotopic system more faithfully reflects the source of peraluminous magmas in the Chinese Altai than the Hf isotopic system, and (2) the oceanic sediment recycling was an important process during continental growth in the CAOB.
CDKN1C and KCNQ1OT1 are imprinted genes that might be potential regulators of placental development. This study investigated placental expressions of CDKN1C and KCNQ1OT1 in monozygotic twins with and without selective intrauterine growth restriction (sIUGR). Seventeen sIUGR and fifteen normal monozygotic(MZ) twin pairs were examined. Placental mRNA expressions of CDKN1C and KCNQ1OT1 were detected by real-time fluorescent quantitative PCR. CDKN1C protein expression was detected by immunohistochemical assay and Western-blotting. In the sIUGR group, smaller fetuses had a smaller share of the placenta, and CDKN1C protein expression was significantly increased while KCNQ1OT1 mRNA expression was significantly decreased. The CDKN1C/KCNQ1OT1 mRNA ratio was lower in the larger fetus than in the smaller fetus (p < .05). In the control group, CDKN1C protein expression showed no difference between larger and smaller fetuses, while KCNQ1OT1 mRNA expression was significantly lower in the larger fetus, and the CDKN1C/KCNQ1OT1 mRNA ratio was higher in the larger fetus than in the smaller fetus (p < .05). Our findings showed that pathogenesis of sIUGR may be related to the co-effect of the up-regulated protein expression of CDKN1C and down-regulated mRNA expression of KCNQ1OT1 in the placenta.
To evaluate the effects of different anthropogenic activities on zooplankton and the pelagic ecosystem, we conducted seasonal cruises in 2010 to assess spatial heterogeneity among the mesozooplankton communities of Xiangshan Bay, a subtropical semi-enclosed bay in China. The evaluation included five different areas: a kelp farm, an oyster farm, a fish farm, the thermal discharge area of a power plant, and an artificial reef, and we aimed to identify whether anthropogenic activities dominated spatial variation in the mesozooplankton communities. The results demonstrated clear spatial heterogeneity among the mesozooplankton communities of the studied areas, dominantly driven by natural hydrographic properties, except in the area near the thermal discharge outlet of the power station. In the outlet area, thermal shock caused by the discharge influenced the mesozooplankton community by decreasing abundance and biomass throughout the four seasons, even causing a shift in the dominant species near the outlet during summer from Acartia pacifica to eurythermal and warm water taxa. Unique features of the mesozooplankton community in the oyster farm may be due to the combined effects of oyster culture and the natural environment in the branch harbour. However, kelp and fish culture, and the construction of an artificial reef did not exert any obvious influence on the mesozooplankton communities up to 2010, probably because of the small scale of the aquaculture and a time lag in the rehabilitation effects of the artificial reef. Thus, our results suggested that the dominant factors influencing spatial variations of mesozooplankton communities in Xiangshan Bay were still the natural hydrographic properties, but the thermal discharge was an anthropogenic activity that changed the pelagic ecosystem, and should be supervised.
A continuous time delay-difference model (CD-DM) was applied to the Chinese neon flying squid (Ommastrephes bartramii) jigging fisheries data (2001–2004) in the north-west Pacific Ocean. The continuous time delay-difference model (CD-DM) was modified from the discrete-time delay-difference model (D-DM), in which recruitment, growth and mortality rates are treated as varying continuously over time. Some commercially important stocks, such as shrimp and O. bartrami with recruitment, growth and mortality rates all varying continuously over time, may be better analysed by a continuous delay-difference model. We estimated the growth and recruitment of O. bartramii on the basis of the CD-DM, and biological reference points (BRPs) and accuracy of estimates are discussed in this study. We obtained population sizes of 183.9–201.8 million squid during early September 2004. The status of the stock was not in a sustainable state at this time with the available data, which suggests that measures should be taken for the sustainable utilization of this stock. The ability to calculate reference points without need of a full age-structured data makes CD-DM an attractive option for data-poor fisheries. We provided an alternative method for assessing O. bartramii stock and bridged the gap between simple surplus production models and complex fully age-structured models.
It has been demonstrated in literature that chemical liquid deposition (CLD) processes such as dip coating, spray coating, roll coating, spin coating, curtain coating, meniscus coating etc. can be successfully used to deposit anti-reflective coatings on glass substrates. In comparison to physical vapor deposition (PVD), a CLD process generally is cost efficient because of lower capital requirements to set up coating manufacturing lines. Within the realm of CLD processes only some application techniques are suitable for high speed continuous manufacturing processes to deposit coatings on large area glass substrates. Significant differences in transfer efficiencies of these high speed application processes are readily apparent when material utilization per unit area of glass are compared. Roll coat process among all the high speed CLD processes stands out for its high material transfer efficiency due to direct contact printing on flat glass substrates. Honeywell Electronic Materials expanded its line of SOLARC® anti-reflective coating materials to include a new coating formulation SOLARC® RPV, which is customized for roll coating application. This paper highlights the advantages of using SOLARC® RPV in roll coat process and the performance attributes of SOLARC® anti-reflective coatings. Durability characteristics of these anti-reflective coatings in accelerated aging tests designed to simulate harsh field conditions will also be discussed.
The strategies of repair of tetralogy of Fallot change with the age of patients. In children older than 4 years and adults, the optimal strategy may be to use different method of reconstruction of the right ventricular outflow tract from those followed in younger children, so as to avoid, or reduce, the pulmonary insufficiency that is increasingly known to compromise right ventricular function.
Methods
From April, 2001, through May, 2008, we undertook complete repair in 312 patients, 180 male and 132 female, with a mean age of 11.3 years ±0.4 years, and a range from 4 to 48 years, with typical clinical and morphological features of tetralogy of Fallot, including 42 patients with the ventriculo-arterial connection of double outlet right ventricle. The operation was performed under moderate hypothermia using blood cardioplegia. The ventricular septal defect was closed with a Dacron patch. When it was considered necessary to resect the musculature within the right ventricular outflow tract, or perform pulmonary valvotomy, we sought to preserve the function of the pulmonary valve by protecting as far as possible the native leaflets, or creating a folded monocusp of autologous pericardium.
Results
The repair was achieved completely through right atrium in 192, through the right ventricular outflow tract in 83, and through the right atrium, the outflow tract, and the pulmonary trunk in 36 patients. A transjunctional patch was inserted in 169 patients, non-valved in all but 9. There were no differences regarding the periods of aortic cross-clamping or cardiopulmonary bypass. Of the patients, 5 died (1.6%), with no influence noted for the transjunctional patch. Of those having a non-valved patch inserted, three-tenths had pulmonary regurgitation of various degree, while those having a valved patch had minimal pulmonary insufficiency and good right ventricular function postoperatively, this being maintained after follow-up of 8 to 24-months.
Conclusions
Based on our experience, we suggest that the current strategy of repair of tetralogy of Fallot in older children and adults should be based on minimizing the insertion of transjunctional patches, this being indicated only in those with very small ventriculo-pulmonary junctions. If such a patch is necessary, then steps should be taken to preserve the function of the pulmonary valve.
A total of 791 microsatellites (SSRs) were isolated from 7055 Panax ginseng expressed sequence tags (ESTs). According to primer design criteria, 68 primer pairs for EST-SSR were designed. Under an appropriate polymerase chain reaction (PCR) system, all EST-SSR primer pairs were screened against genomic DNA of Ji'anchangbo and Fusong'ermaya from Panax ginseng, and 43 EST-SSR primer pairs out of the above 68 resulted in PCR products. Then, all 43 pairs were detected in nine P. ginseng, two Panax quinquefolius and two Acanthopanax senticosus cultivars for polymorphisms, and 26 pairs (60.47%) were found to be polymorphic, accounting for 38.23% of the total number of designed primer pairs. These results demonstrate the possibility of developing EST-SSR markers using P. ginseng ESTs.
According to the sequence of Rccn4, which is highly similar to the nucleotide-binding site (NBS) coding region of the cereal cyst nematode resistance gene, Cre3, three 3′ nested primers were designed to amplify its 3′ flanking region through single oligonucleotide nested polymerase chain reaction (SON-PCR). One 1264 bp band, Rccn-L, was amplified from E-10, a wheat–Aegilops variabilis translocation line containing the cereal cyst nematode resistance gene from Ae. variabilis. Sequence analysis showed that Rccn-L possesses the 3′ flanking sequence of Rccn4 and contains a 55 bp-sized consensus sequence with Rccn4. The coding region was 1026 bp, consisting of an incomplete open reading frame, a terminator codon and no initiation codon and intron; it encoded a peptide of 342 amino acid residues and shared 86% nucleotide sequence identity with Cre3. The peptide had a conserved leucine-rich repeat (LRR) domain, containing the imperfect repeats, XXLXXLXXL, comprising 17% leucine residues, and shares, respectively, 89% nucleotide sequence and 78% amino acid sequence identity with the LRR sequence of the Cre3 locus. In the present study, SON-PCR was used successfully, for the first time, in plant genome research and proved to be a valuable method in plant gene cloning. The acquirement of Rccn-L established the foundation for obtaining the complete Rccn gene and further structural and functional investigations.
Inter-simple sequence repeat (ISSR) analysis was carried out in Thatcher, 20 near-isogenic lines (NILs) containing respectively different genes conferring resistance against wheat leaf rust (Puccinia recondite f.sp. tritici), three materials carrying Lr37 and three materials without Lr37. All of the 100 ISSR primers showed clear amplification products. Two of them amplified the polymorphic DNA bands in the NILs, Thatcher and Lr37/6*Thatcher. The polymorphic bands were named UBC812-1200 and UBC848-700, respectively. The three materials with and without Lr37 were detected in tests using the two primers UBC812 and UBC848. Results also showed that only band UBC812-1200 was amplified in all resistant and absent in all susceptible materials. This suggests that UBC812-1200 marker is linked to the resistance gene Lr37. The genetic linkage of the polymorphic marker with Lr37 was tested using a segregating F2 population (128 plants) derived from a cross between the leaf rust-resistant Lr37/6*Thatcher and the susceptible cultivar Thatcher. The ISSR marker UBC812-1200 showed co-segregation to the Lr37 resistance gene. It could be used in molecular marker-assisted selection in a wheat breeding programme for leaf rust resistance.