We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, a novel fast nonsingular integral terminal sliding mode controller based on an adaptive neural network (ANN-FNITSMC) is proposed for the trajectory tracking control of cable-driven continuum robots (CDCRs) in complex underwater environments with uncertainties. First, a novel fast nonsingular integral terminal sliding mode control (FNITSMC) is designed to solve the chattering and singularity problems of the conventional terminal sliding mode control (TSMC). Second, an adaptive neural network (ANN) based on a radial basis function (RBF) is established to derive the uncertainties and compensate for the control input of CDCRs, enabling high-stable accuracy and strong robustness trajectory tracking in complex underwater environments. Simulation results are presented to demonstrate the high accuracy and strong robustness of the ANN-FNITSMC. Finally, the high accuracy, high stability, and strong robustness of the proposed trajectory tracking strategy are verified through an underwater experiment platform.
The nonlinear waves in a sheared liquid film on a horizontal plate at small Reynolds numbers are examined by theoretical and numerical approaches. The analysis employs the long-wave approximation along with finite difference schemes. The results show that the surface tension can suppress disturbances and prevent the occurrence of singularities. While the film flow is driven by the shear stress on the interface, its instability highly depends on the magnitude and direction of gravity. Specifically, when the direction of gravity is opposite to the wall-normal direction, perturbations are stabilized by gravity. In contrast, when these two directions are the same, the gravitational force is destabilizing, and stationary travelling waves can exist if a balance is reached between the effects of gravity and surface tension. For the steady solitary waves, there are quasi-periodic oscillations occurring between two stationary points, indicating the presence of heteroclinic trajectories. For periodic waves, the evolutions are sensitive to several parameters and initial disturbances, while one steady-state wave exhibits a sine function-like behaviour.
The AIMTB rapid test assay is an emerging test, which adopted a fluorescence immunochromatographic assay to measure interferon-γ (IFN-γ) production following stimulation of effector memory T cells in whole blood by mycobacterial proteins. The aim of this article was to explore the ability of AIMTB rapid test assay in detecting Mycobacterium tuberculosis (MTB) infection compared with the widely applied QuantiFERON-TB Gold Plus (QFT-Plus) test among rural doctors in China. In total, 511 participants were included in the survey. The concordance between the QFT-Plus test and the AIMTB rapid test assay was 94.47% with a Cohen’s kappa coefficient (κ) of 0.84 (95% CI, 0.79–0.90). Improved concordance between the two tests was observed in males and in participants with 26 or more years of service as rural doctors. The quantitative values of the QFT-Plus test was higher in individuals with a result of QFT-Plus-/AIMTB+ as compared to those with a result of QFT-Plus-/AIMTB- (p < 0.001). Overall, our study found that there was an excellent consistency between the AIMTB rapid test assay and the QFT-Plus test in a Chinese population. As the AIMTB rapid test assay is fast and easy to operate, it has the potential to improve latent tuberculosis infection testing and treatment at the community level in resource-limited settings.
Human alveolar echinococcosis is a hard-to-treat and largely untreated parasitic disease with high associated health care costs. The current antiparasitic treatment for alveolar echinococcosis relies exclusively on albendazole, which does not act parasiticidally and can induce severe adverse effects. Alternative, and most importantly, improved treatment options are urgently required. A drug repurposing strategy identified the approved antimalarial pyronaridine as a promising candidate against Echinococcus multilocularis infections. Following a 30-day oral regimen (80 mg kg−1 day−1), pyronaridine achieved an excellent therapeutic outcome in a clinically relevant hepatic alveolar echinococcosis murine model, showing a significant reduction in both metacestode size (72.0%) and counts (85.2%) compared to unmedicated infected mice, which revealed significantly more potent anti-echinococcal potency than albendazole treatment at an equal dose (metacestode size: 42.3%; counts: 4.1%). The strong parasiticidal activity of pyronaridine was further confirmed by the destructive damage to metacestode tissues observed morphologically. In addition, a screening campaign combined with computational similarity searching against an approved drug library led to the identification of pirenzepine, a gastric acid-inhibiting drug, exhibiting potent parasiticidal activity against protoscoleces and in vitro cultured small cysts, which warranted further in vivo investigation as a promising anti-echinococcal lead compound. Pyronaridine has a known drug profile and a long track record of safety, and its repurposing could translate rapidly to clinical use for human patients with alveolar echinococcosis as an alternative or salvage treatment.
This study aimed to evaluate the association between vegetable intake and major depressive disorder (MDD) through cross-sectional analysis and bidirectional two-sample Mendelian randomisation (MR).
Design:
Cross-sectional analysis was conducted on National Health and Nutrition Examination Survey (NHANES) data from 2005 to 2018 and the corresponding Food Patterns Equivalents Database (FPED). Genome-wide association study (GWAS) data were obtained from UK Biobank and Psychiatric Genomics Consortium (PGC) dataset. Logistic regression analysis was performed after calculating the weights of the samples. Inverse variance weighted, MR-Egger and weighted median methods were used to evaluate the causal effects.
Setting:
A Patient Health Questionnaire-9 score ≥ 10 was considered to indicate MDD. Low vegetable intake was defined as < 2 cups of vegetables per day.
Participants:
30 861 U.S. adults from NHANES. The GWAS data sample size related to vegetable intake were comprised 448 651 and 435 435 cases respectively, while the GWAS data sample size associated with MDD encompassed 500 199 cases.
Results:
There were 23 249 (75·33 %) participants with low vegetable intake. The relationship between vegetable intake and MDD was nonlinear. In the multivariate model adjusted for sex, age, education, marital status, poverty income ratio, ethnicity and BMI, participants with low vegetable intake were associated with an increased risk of MDD (OR = 1·53, 95 % CI (1·32, 1·77), P < 0·001). Bidirectional MR showed no causal effects between vegetable intake and MDD.
Conclusions:
Cross-sectional analysis identified a significant relationship between vegetable intake and MDD, whereas the results from bidirectional two-sample MR did not support a causal role.
Previous studies suggest a link between vitamin D status and COVID-19 susceptibility in hospitalised patients. This study aimed to investigate whether vitamin D concentrations in elderly individuals were associated with their susceptibility to Omicron COVID-19 incidence, the severity of the disease and the likelihood of reoccurrence during the era of the post-‘zero-COVID-19’ policies in China.
Design:
In this retrospective study, participants were categorised into three groups based on their 25(OH)D concentrations: deficiency (< 20 ng/ml), insufficiency (20 to < 30 ng/ml) and sufficiency (≥ 30 ng/ml). The demographic and clinical characteristics, comorbidities and the incidence rate, reoccurrence rate and severity of Omicron COVID-19 were retrospectively recorded and analysed by using hospital information system data and an online questionnaire survey.
Setting:
China.
Participants:
222 participants aged 60 years or older from a health management centre.
Results:
Our findings revealed significant differences in the incidence (P = 0·03) and recurrent rate (P = 0·02) of Omicron COVID-19 among the three groups. Participants with lower 25(OH)D concentrations (< 20 ng/ml) exhibited higher rates of initial incidence and reoccurrence and a greater percentage of severe and critical cases. Conversely, individuals with 25(OH)D concentrations ≥ 30 ng/ml had a higher percentage of mild cases (P = 0·003). Binary and ordinal logistic regression models indicated that vitamin D supplementation was not a significant risk factor for COVID-19 outcomes.
Conclusions:
In the elderly population, pre-infection vitamin D deficiency was associated with increased susceptibility to incidence, severity of illness and reoccurrence rates of Omicron COVID-19.
As a required sample preparation method for 14C graphite, the Zn-Fe reduction method has been widely used in various laboratories. However, there is still insufficient research to improve the efficiency of graphite synthesis, reduce modern carbon contamination, and test other condition methodologies at Guangxi Normal University (GXNU). In this work, the experimental parameters, such as the reduction temperature, reaction time, reagent dose, Fe powder pretreatment, and other factors, in the Zn-Fe flame sealing reduction method for 14C graphite samples were explored and determined. The background induced by the sample preparation process was (2.06 ± 0.55) × 10–15, while the 12C– beam current were better than 40μA. The results provide essential instructions for preparing 14C graphite of ∼1 mg at the GXNU lab and technical support for the development of 14C dating and tracing, contributing to biology and environmental science.
Acoustic resonance is an important factor that contributes to aeroengine compressor failure. In this study, a plane cascade of compressor blades was designed to reproduce acoustic resonance via a low-speed wind tunnel test. A high-frequency hot-wire, microphone and strain gauge were used to synchronously measure the fluid, acoustic and structural parameters. We analysed the variation in the amplitude and frequency of the multi-field parameters with increasing mean flow velocity and explored the multi-field interaction mechanism that induces the acoustic resonance of the plane cascade. The plane cascade effectively reproduced the acoustic resonance phenomenon. The first-order acoustic-mode frequency of the plane cascade flow duct, second-order torsional vibration mode frequency of the blade and shedding mode frequency of the tip clearance leakage vortex were equal under acoustic resonance. The fluid, acoustic and structural fields showed a strong interaction effect, achieving the maximum blade vibration amplitude and causing fatigue cracks of torsional vibration at the blade root. The frequency lock-in region of the compressor plane cascade was divided into an ‘acoustic–structure’ interaction region, a ‘fluid–acoustic–structure’ interaction region and a first-order acoustic-mode dominant region with increasing mean flow velocity, which demonstrates an interesting phenomenon in which the fluid–acoustic–structure modes compete: acoustic mode > blade vibration mode > vortex shedding mode. The results demonstrate a unique approach to the study of acoustic resonance that provides insight into the acoustic resonance mechanism in a cascade of compressor blades.
A new vacuum line to extract CO2 from carbonate and dissolved inorganic carbon (DIC) in water was established at Guangxi Normal University. The vacuum line consisted of two main components: a CO2 bubble circulation region and a CO2 purification collection region, both of which were made of quartz glass and metal pipelines. To validate its reliability, a series of carbonate samples were prepared using this system. The total recovery rate of CO2 extraction and graphitization exceeded 80%. Furthermore, the carbon content in calcium carbonate exhibited a linear relationship with the CO2 pressure within the system, demonstrating its stability and reliability. The system was also employed to prepare and analyze various samples, including calcium carbonate blanks, foraminiferal, shell, groundwater, and subsurface oil-water samples. The accelerator mass spectrometry (AMS) results indicated that the average beam current for 12C- in the samples exceeded 40 μA. Additionally, the contamination introduced during the liquid sample preparation process was approximately (1.77 ± 0.57) × 10−14. Overall, the graphitized preparation system for carbonate and DIC in water exhibited high efficiency and recovery, meeting the requirements for samples dating back to approximately 30,000 years.
Light stimulation can realise the remote control of the deformation of the specific position of 4D printing structure. Shape-memory polymer–carbon nanotube (CNT) composite materials, with outstanding near-infrared photothermal conversion rate and shape-memory ability, is one type of the most popular light responsive smart materials. However, current studies focused on the photothermal effect and shape-memory applications of light-responsive shape-memory polymer composite (SMPC) sheet structures, and there is no research on the photothermal effect in the depth direction of light-responsive SMPC three-dimensional structures. Here, we prepared a UV curable, mechanically robust, and highly deformable shape-memory polymer (IBBA) as the matrix of light responsive SMPC. CNTs were added as photothermal conversion materials. We explore the photothermal effect of near-infrared laser on the surface and depth of IBBA–CNT composites cube. Shape-memory experiments show that different folded shapes can be obtained by selective near-infrared laser programming. Selective near-infrared laser programming three-dimensional movable type plate shows a programming application in depth direction of three-dimensional light-responsive intelligent structure. This research extends the application of near-infrared laser in 4D printing to the depth direction of intelligent structures, which will bring more complex and interesting 4D printing structures in the future.
The absorption and distribution of radiocarbon-labeled urea at the ultratrace level were investigated with a 14C-AMS biotracer method. The radiopharmaceutical concentrations in the plasma, heart, liver, spleen, lung, kidney, stomach, brain, bladder, muscle, testis, and fat of rats after oral administration of 14C urea at ultratrace doses were determined by AMS, and the concentration-time curves in plasma and tissues and pharmacokinetic distribution data were obtained. This study provides an analytical method for the pharmacokinetic parameters and tissue distribution of exogenous urea in rats at ultratrace doses and explores the feasibility of evaluation and long-term tracking of ultratrace doses of drugs with AMS.
Intracytoplasmic sperm injection (ICSI) is a technique that directly injects a single sperm into the cytoplasm of mature oocytes. Here, we explored the safety of single-sperm cryopreservation applied in ICSI. This retrospective study enrolled 186 couples undergoing ICSI-assisted pregnancy. Subjects were allocated to the fresh sperm (group A)/single-sperm cryopreservation (group B) groups based on sperm type, with their clinical baseline/pathological data documented. We used ICSI-compliant sperm for subsequent in vitro fertilization and followed up on all subjects. The recovery rate/cryosurvival rate/sperm motility of both groups, the pregnancy/outcome of women receiving embryo transfer, and the delivery mode/neonatal-related information of women with successful deliveries were recorded. The clinical pregnancy rate, cumulative clinical pregnancy rate, abortion rate, ectopic pregnancy rate, premature delivery rate, live birth delivery rate, neonatal birth defect rate, and average birth weight were analyzed. The two groups showed no significant differences in age, body mass index, ovulation induction regimen, sex hormone [anti-Müllerian hormone (AMH)/follicle-stimulating hormone (FSH)/luteinizing hormone (LH)] levels, or oocyte retrieval cycles. The sperm recovery rate (51.72%-100.00%) and resuscitation rate (62.09% ± 16.67%) in group B were higher; the sperm motility in the two groups demonstrated no significant difference and met the ICSI requirements. Group B exhibited an increased fertilization rate, decreased abortion rate, and increased safety versus group A. Compared with fresh sperm, the application of single-sperm cryopreservation in ICSI sensibly improved the fertilization rate and reduced the abortion rate, showing higher safety.
The electromagnetic scattering problem over a wide incident angle can be rapidly solved by introducing the compressive sensing theory into the method of moments, whose main computational complexity is comprised of two parts: a few calculations of matrix equations and the recovery of original induced currents. To further improve the method, a novel construction scheme of measurement matrix is proposed in this paper. With the help of the measurement matrix, one can obtain a sparse sensing matrix, and consequently the computational cost for recovery can be reduced by at least half. The scheme is described in detail, and the analysis of computational complexity and numerical experiments are provided to demonstrate the effectiveness.
Despite the challenges associated with motherhood, studies have not consistently identified factors contributing to first-time mothers’ dissatisfaction with motherhood in resource-limited regions. To fill this research gap, this study investigates how adverse childhood experiences (ACEs) result in first-time mothers’ dissatisfaction with motherhood through emotional distress in Nigeria. Results from the partial least square structural equation model suggests that ACEs are associated with dissatisfaction with motherhood ($ \beta $ = 0.092; p < 0.01) and emotional distress ($ \beta $ = 0.367; p < 0.001). There is also a significant association between emotional distress and dissatisfaction with motherhood ($ \beta $ = 0.728; p < 0.001). Indirect path from first-time mothers’ ACEs to dissatisfaction with motherhood through emotional distress shows significance ($ \beta $ = 0.267; 95% CI (0.213, 0.323); p < 0.001). In addition, the indirect path from first-time mothers’ ACEs to dissatisfaction with motherhood through child emotional closeness showed significant dampening effects ($ \beta $ = 0.044; 95% CI (0.025, 0.066); p < 0.001). No serial impact of emotional distress and child emotional closeness was found in the study. The findings based on child gender indicated that only among first-time mothers of female children are ACEs predictors of dissatisfaction with motherhood. Trauma-informed interventions should be introduced in primary care settings to screen for ACEs and emotional dysfunctions among first-time mothers.
A multi-band circularly polarized antenna is proposed for WLAN (2.4/5.3/5.8 GHz) and WiMAX (3.5 GHz) applications. The proposed antenna is constructed of a radiation patch and a reflecting metal ground. Characteristic mode theory is utilized to analyze the modes of the patch and based on these results the antenna is optimized. The −10 dB impedance bandwidths of the proposed antenna are 53.53% (2.4–4.15 GHz) and 47.28% (5.25–8.5 GHz), respectively. The antenna radiates left-handed circular polarization in the lower band and right-handed circular polarization in the upper band. A maximum gain of 10 dBic is achieved for the proposed antenna.
The laboratory generation and diagnosis of uniform near-critical-density (NCD) plasmas play critical roles in various studies and applications, such as fusion science, high energy density physics, astrophysics as well as relativistic electron beam generation. Here we successfully generated the quasistatic NCD plasma sample by heating a low-density tri-cellulose acetate (TCA) foam with the high-power-laser-driven hohlraum radiation. The temperature of the hohlraum is determined to be 20 eV by analyzing the spectra obtained with the transmission grating spectrometer. The single-order diffraction grating was employed to eliminate the high-order disturbance. The temperature of the heated foam is determined to be T = 16.8 ± 1.1 eV by analyzing the high-resolution spectra obtained with a flat-field grating spectrometer. The electron density of the heated foam is about under the reasonable assumption of constant mass density.
In preparation for an experiment with a laser-generated intense proton beam at the Laser Fusion Research Center at Mianyang to investigate the 11B(p,α)2α reaction, we performed a measurement at very low proton energy between 140 keV and 172 keV using the high-voltage platform at the Institute of Modern Physics, Lanzhou. The aim of the experiment was to test the ability to use CR-39 track detectors for cross-section measurements and to remeasure the cross-section of this reaction close to the first resonance using the thick target approach. We obtained the cross-section σ = 45.6 ± 12.5 mb near 156 keV. Our result confirms the feasibility of CR-39 type track detector for nuclear reaction measurement also in low-energy regions.
This study assesses the difference in professional attitudes among medical students, both before and after coronavirus disease 2019 (COVID-19), and identifies the determinants closely associated with it, while providing precise and scientific evidence for implementing precision education on such professional attitudes.
Methods:
A pre-post-like study was conducted among medical students in 31 provinces in mainland China, from March 23, to April 19, 2021.
Results:
The proportion of medical students whose professional attitudes were disturbed after the COVID-19 pandemic, was significantly lower than before the COVID-19 pandemic (χ2 = 15.6216; P < 0.0001). Compared with the “undisturbed -undisturbed” group, the “undisturbed-disturbed” group showed that there was a 1.664-fold risk of professional attitudes disturbed as grade increased, 3.269-fold risk when others suggested they choose a medical career rather than their own desire, and 7.557-fold risk for students with COVID-19 in their family, relatives, or friends; while the “disturbed-undisturbed” group showed that students with internship experience for professional attitudes strengthened was 2.933-fold than those without internship experience.
Conclusions:
The professional attitudes of medical students have been strengthened during the COVID-19 pandemic. The results provide evidence of the importance of education on professional attitudes among medical students during public health emergencies.
Our previous studies have suggested that spastin, which aggregates on spindle microtubules in oocytes, may promote the assembly of mouse oocyte spindles by cutting microtubules. This action may be related to CRMP5, as knocking down CRMP5 results in reduced spindle microtubule density and maturation defects in oocytes. In this study, we found that, after knocking down CRMP5 in oocytes, spastin distribution shifted from the spindle to the spindle poles and errors in microtubule–kinetochore attachment appeared in oocyte spindles. However, CRMP5 did not interact with the other two microtubule-severing proteins, katanin-like-1 (KATNAL1) and fidgetin-like-1 (FIGNL1), which aggregate at the spindle poles. We speculate that, in oocytes, due to the reduction of spastin distribution on chromosomes after knocking down CRMP5, microtubule–kinetochore errors cannot be corrected through severing, resulting in meiotic division abnormalities and maturation defects in oocytes. This finding provides new insights into the regulatory mechanisms of spastin in oocytes and important opportunities for the study of meiotic division mechanisms.
Anxiety disorder is one of the common mental health problems in college students, which hurts their study, work, and life. Comprehensive psychological crisis intervention is a complete psychological treatment method expected to be essential in treating anxiety disorders in college students.
Subjects and Methods
One hundred college students with anxiety disorder were selected as research subjects and randomly divided into two groups. The experimental group received comprehensive psychological crisis intervention treatment and comprehensive intervention measures such as psychological assistance, cognitive behavioral therapy, and intimate relationship training. The control group received traditional psychotherapy, including counseling and medication. The Self-rating Anxiety Scale (SAS), Self-rating Depression Scale (SDS), and other assessment tools were used to carry out psychological measurements of the two groups of patients before, after, and at the follow-up point, respectively. The collected information was statistically analyzed by SPSS23.0 software.
Results
After the comprehensive psychological crisis intervention treatment, the anxiety and depression levels of the experimental group were significantly reduced (P<0.001), and life satisfaction was significantly increased (P<0.001). Compared with the control group, the experimental group showed obvious advantages in curative effect.
Conclusions
Comprehensive psychological crisis intervention has shown remarkable efficacy in college students with anxiety disorders, can effectively reduce anxiety and depression, and improves the life satisfaction of patients. This approach may become an essential option for treating anxiety disorders in college students.
Acknowledgement
2021 Humanities and Social Sciences Research Project for Basic Research Business Expenses of Provincial Undergraduate Universities in Heilongjiang Province. No. 2021- kyywf-0384.