Time-harmonic electromagnetic waves are scattered by a homogeneous dielectric obstacle. The corresponding electromagnetic transmission problem is reduced to a single integral equation over S for a single unknown tangential vector field, where S is the interface between the obstacle and the surrounding medium. In fact, several different integral equations are derived and analysed, including two previously-known equations due to E. Marx and J. R. Mautz, and two new singular integral equations. Mautz's equation is shown to be uniquely solvable at all frequencies. A new uniquely solvable singular integral equation is also found. The paper also includes a review of methods using pairs of coupled integral equations over S. It is these methods that are usually used in practice, although single integral equations seem to offer some computational advantages.