We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
There is a known high prevalence of genetic and clinical syndrome diagnoses in the paediatric cardiac population. These disorders often have multisystem effects, which may have an important impact on neurodevelopmental outcomes. Taken together, these facts suggest that patients and families may benefit from consultation by genetic specialists in a cardiac neurodevelopmental clinic.
Objective
This study assessed the burden of genetic disorders and utility of genetics evaluation in a cardiac neurodevelopmental clinic.
Methods
A retrospective chart review was conducted of patients evaluated in a cardiac neurodevelopmental clinic from 6 December, 2011 to 16 April, 2013. All patients were seen by a cardiovascular geneticist with genetic counselling support.
Results
A total of 214 patients were included in this study; 64 of these patients had a pre-existing genetic or syndromic diagnosis. Following genetics evaluation, an additional 19 were given a new clinical or laboratory-confirmed genetic diagnosis including environmental such as teratogenic exposures, malformation associations, chromosomal disorders, and single-gene disorders. Genetic testing was recommended for 112 patients; radiological imaging to screen for congenital anomalies for 17 patients; subspecialist medical referrals for 73 patients; and non-genetic clinical laboratory testing for 14 patients. Syndrome-specific guidelines were available and followed for 25 patients with known diagnosis. American Academy of Pediatrics Red Book asplenia guideline recommendations were given for five heterotaxy patients, and family-based cardiac screening was recommended for 23 families affected by left ventricular outflow tract obstruction.
Conclusion
Genetics involvement in a cardiac neurodevelopmental clinic is helpful in identifying new unifying diagnoses and providing syndrome-specific care, which may impact the patient’s overall health status and neurodevelopmental outcome.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.