We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The impact of secondary fluorescence on the material compositions measured by X-ray analysis for layered semiconductor thin films is assessed using simulations performed by the DTSA-II and CalcZAF software tools. Three technologically important examples are investigated: AlxGa1−xN layers on either GaN or AlN substrates, InxAl1−xN on GaN, and Si-doped (SnxGa1−x)2O3 on Si. Trends in the differences caused by secondary fluorescence are explained in terms of the propensity of different elements to reabsorb either characteristic or bremsstrahlung X-rays and then to re-emit the characteristic X-rays used to determine composition of the layer under investigation. Under typical beam conditions (7–12 keV), the quantification of dopants/trace elements is found to be susceptible to secondary fluorescence and care must be taken to prevent erroneous results. The overall impact on major constituents is shown to be very small with a change of approximately 0.07 molar cation percent for Al0.3Ga0.7N/AlN layers and a maximum change of 0.08 at% in the Si content of (SnxGa1−x)2O3/Si layers. This provides confidence that previously reported wavelength-dispersive X-ray compositions are not compromised by secondary fluorescence.
Wavelength-dispersive X-ray (WDX) spectroscopy was used to measure silicon atom concentrations in the range 35–100 ppm [corresponding to (3–9) × 1018 cm−3] in doped AlxGa1–xN films using an electron probe microanalyser also equipped with a cathodoluminescence (CL) spectrometer. Doping with Si is the usual way to produce the n-type conducting layers that are critical in GaN- and AlxGa1–xN-based devices such as LEDs and laser diodes. Previously, we have shown excellent agreement for Mg dopant concentrations in p-GaN measured by WDX with values from the more widely used technique of secondary ion mass spectrometry (SIMS). However, a discrepancy between these methods has been reported when quantifying the n-type dopant, silicon. We identify the cause of discrepancy as inherent sample contamination and propose a way to correct this using a calibration relation. This new approach, using a method combining data derived from SIMS measurements on both GaN and AlxGa1–xN samples, provides the means to measure the Si content in these samples with account taken of variations in the ZAF corrections. This method presents a cost-effective and time-saving way to measure the Si doping and can also benefit from simultaneously measuring other signals, such as CL and electron channeling contrast imaging.
A prior systematic review on the efficacy of halofuginone (HFG) treatment to prevent or treat cryptosporidiosis in bovine calves was inconclusive. We undertook an updated synthesis and meta-analyses on key outcomes for the treatment of calves with HFG. Evaluated outcomes were oocyst shedding, diarrhoea, mortality and weight gain. Experiments had to describe results for same age animals in contemporary arms. Most doses were 100–150 mcg kg−1 day−1. Results were subgrouped by study design, experiments with the lowest risk of bias and lack of industry funding. Eighteen articles were found that described 25 experiments. Most evidence came from randomized controlled trials in Europe. Significantly lower incidence of oocyst shedding, diarrhoea burden and mortality was reported when treatment started before calves were 5 days old. Most studies reported on outcomes for animals up to at least 28 days old. Publication bias was possible in all outcomes and seemed especially likely for diarrhoea outcomes. Beneficial results when HFG treatment was initiated in calves older than 5 days were also found. Prophylactic treatment to prevent cryptosporidiosis is effective in preventing multiple negative outcomes and is beneficial to calf health and will result in a reduction of environmental contamination by Cryptosporidium oocysts.
Clinical and environmental isolates of pathogens are often unique and may be unculturable, yielding a very limited amount of DNA for genetic studies. Cryptosporidium in particular are difficult to propagate. Whole genome amplification (WGA) is a valuable technique for amplifying genomic material. In this study, we tested 5 WGA commercial kits using Cryptosporidium clinical isolates. DNA of 5 C. hominis and 5 C. parvum clinical isolates and C. parvum IOWA reference strain were used. The majority of the samples were amplified by all of the kits tested. The integrity and fidelity of the amplified genomic DNA were assessed by sequence analysis of several PCR products of varying length. We found evidence that one kit in particular may be more error prone while another seemed the more suitable kit for Cryptosporidium clinical samples, generating high molecular weight DNA from all the samples with high fidelity. Thus WGA was found to be a useful technique for producing amplified DNA suitable for downstream genotyping techniques and archiving of Cryptosporidium clinical isolates.
With improvements in technology and surgical technique, paediatric cardiologists are challenging surgeons to repair balanced atrioventricular septal defects in smaller patients. Early repair minimizes aggressive medical therapy to prevent heart failure, maintains growth, and limits exposure to elevated pulmonary pressures. We compare the outcomes of repair among different-sized children.
Methods
From December 2002 to July 2005, 92 patients underwent repair of an atrioventricular septal defect with common atrioventricular valvar orifice and balanced ventricles. We reviewed operative and postoperative data. We excluded patients weighing more than 10 kilograms, but included those who underwent concomitant closure of a patent oval foramen or atrial septal defect, or ligation of a patent arterial duct. Those requiring other concomitant procedures were excluded from the analysis.
Results
The median weight at repair was 4.9 kilograms, with a range from 2.93 to 7.9 kilograms, and the median age was 5.1 months, with a range from 0.39 to 9.6 months. Operative data included the time required for cardiopulmonary bypass, aortic cross-clamping, and the overall procedure. These times were not significantly affected by decreasing weight. Postoperative continuous data included duration of ventilation and length of intensive care unit and hospital stay. Stay in intensive care (p = 0.006) and hospital (p = 0.007) both increased significantly with decreasing weight. Postoperative categorical data included presence of residual ventricular septal defects, regurgitation across the left atrioventricular valve, and complications. While there was no difference in residual defects (p = 0.166) or valvar regurgitation (p = 0.729), there was a significantly higher presence of complications with decreasing weight (p = 0.0043). There was no mortality, and no persistent heart block requiring placement of a permanent pacemaker.
Conclusions
Our data shows that, with the exception of a slightly longer and more complicated postoperative course, early surgery for symptomatic patients with atrioventricular septal defects and common atrioventricular valvar orifice can be undertaken safely and effectively in smaller children with excellent outcomes.
Layered smectite nanoclays are being developed for incorporation into a variety of host polymer systems. Nanoscopic phase distribution can impart enhanced stiffness at low addition levels and improve barrier and flame-retardant properties. When combined with other inorganic and organic modifiers, nanoclays can provide synergies to generate the desired formulation properties and cost/per form ance characteristics. Developments with existing nanoclay products using conventional amine chemistries are described for thermoplastic, thermoset, and rubber formulations. Nanoclays are demonstrating unique, multidimensional per form ance and proc essing capabilities. Commercial applications are emerging in a variety of diverse markets ranging from automotive to packaging.