We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To compare supraglottoplasty versus non-surgical treatment in children with laryngomalacia and mild, moderate and severe obstructive sleep apnoea.
Methods
Patients were classified based on their obstructive apnoea hypopnoea index on initial polysomnogram, which was compared to their post-treatment polysomnogram.
Results
Eighteen patients underwent supraglottoplasty, and 12 patients had non-surgical treatment. The average obstructive apnoea hypopnoea index after supraglottoplasty fell by 12.68 events per hour (p = 0.0039) in the supraglottoplasty group and 3.3 events per hour (p = 0.3) in the non-surgical treatment group. Comparison of the change in obstructive apnoea hypopnoea index in the surgical versus non-surgical groups did not meet statistical significance (p = 0.09).
Conclusion
All patients with laryngomalacia and obstructive sleep apnoea had a statistically significant improvement in obstructive apnoea hypopnoea index after supraglottoplasty irrespective of obstructive sleep apnoea severity, whereas patients who received non-surgical treatment had more variable and unpredictable results. Direct comparison of the change between the two groups did not find supraglottoplasty to be superior to non-surgical treatment. Larger prospective studies are recommended.
The Weibel instability is investigated theoretically and numerically under three scenarios: counterstreaming electron beams in background plasma, an electron–positron beam and an electron–proton beam in background plasma. These models occur widely in laboratory and astrophysical environments. The Weibel instability growth rates are determined numerically from the corresponding cold-fluid dispersion relations, which are confirmed with two-dimensional particle-in-cell simulations. The maximum growth rates for the counterstreaming beams in background plasma are an order of magnitude smaller than the maximum growth rates for the beams cases in the same range of density ratios and beam energies. The maximum growth rate for the electron–positron beam case is shown to be at most a factor $\sqrt {2}$ greater than the electron–proton beam case with similar dispersion behaviours. A non-monotonic relation is found between the maximum Weibel instability growth rates and the electron–positron beam energy, suggesting that increasing beam energies does not entail an increase in the Weibel instability growth rate.
X/γ-rays have many potential applications in laboratory astrophysics and particle physics. Although several methods have been proposed for generating electron, positron, and X/γ-photon beams with angular momentum (AM), the generation of ultra-intense brilliant γ-rays is still challenging. Here, we present an all-optical scheme to generate a high-energy γ-photon beam with large beam angular momentum (BAM), small divergence, and high brilliance. In the first stage, a circularly polarized laser pulse with intensity of 1022 W/cm2 irradiates a micro-channel target, drags out electrons from the channel wall, and accelerates them to high energies via the longitudinal electric fields. During the process, the laser transfers its spin angular momentum (SAM) to the electrons’ orbital angular momentum (OAM). In the second stage, the drive pulse is reflected by the attached fan-foil and a vortex laser pulse is thus formed. In the third stage, the energetic electrons collide head-on with the reflected vortex pulse and transfer their AM to the γ-photons via nonlinear Compton scattering. Three-dimensional particle-in-cell simulations show that the peak brilliance of the γ-ray beam is $\sim 1{0}^{22}$ photons·s–1·mm–2·mrad–2 per 0.1% bandwidth at 1 MeV with a peak instantaneous power of 25 TW and averaged BAM of $1{0}^6\hslash$/photon. The AM conversion efficiency from laser to the γ-photons is unprecedentedly 0.67%.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
David Neely was an internationally recognised scientist who formed collaborations and friendships across the world. His passion for his work always shone through. He always made time for early-career scientists and became a mentor and supervisor to many. He was an active Editorial Board Member of the international journal High Power Laser Science and Engineering. Sadly, David was taken from us much too early. In this Editorial we pay tribute to his work through his publications in the journal.
This paper provides an up-to-date review of the problems related to the generation, detection and mitigation of strong electromagnetic pulses created in the interaction of high-power, high-energy laser pulses with different types of solid targets. It includes new experimental data obtained independently at several international laboratories. The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce. The major emphasis is put on the GHz frequency domain, which is the most damaging for electronics and may have important applications. The physics of electromagnetic emissions in other spectral domains, in particular THz and MHz, is also discussed. The theoretical models and numerical simulations are compared with the results of experimental measurements, with special attention to the methodology of measurements and complementary diagnostics. Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions, which may have promising applications.
To evaluate the use of a perianal swab to detect CDI.
METHODS
A perianal swab was collected from each inpatient with a positive stool sample for C. difficile (by polymerase chain reaction [PCR] test) and was tested for C. difficile by PCR and by culture. The variables evaluated included demographics, CDI severity, bathing before perianal swab collection, hours between stool sample and perianal swab, cycle threshold (Ct) to PCR positivity, and doses of CDI treatment before stool sample and before perianal swab.
RESULTS
Of 83 perianal swabs, 59 (71.1%) tested positive for C. difficile by PCR when perianal swabs were collected an average of 21 hours after the stool sample. Compared with the respective stool sample, the perianal sample was less likely to grow C. difficile (P=.005) and had a higher PCR Ct (P<.001). A direct, significant but weak correlation was detected between the Ct for a positive perianal sample and the respective stool sample (r=0.36; P=.006). An inverse dose relationship was detected between PCR positivity and CDI treatment doses before perianal swab collection (P=.27).
CONCLUSION
Perianal swabs are a simple method to detect C. difficile tcdB gene by PCR, with a sensitivity of 71%. These data were limited because stool samples and perianal swabs were not collected simultaneously. Compared with stool samples, the perianal Ct values and culture results were consistent with a lower bacterial load on the perianal sample due to the receipt of more CDI treatment before collection or unknown factors affecting perianal skin colonization.
As part of the Canadian Journal of Emergency Medicine’s (CJEM) developing social media strategy,1 we are collaborating with the Skeptics’ Guide to Emergency Medicine (SGEM) to summarize and critically appraise the current emergency medicine (EM) literature using evidence-based medicine principles. In the “Hot Off the Press” series, we select original research manuscripts published in CJEM to be featured on the SGEM website/podcast2 and discussed by the study authors and the online EM community. A similar collaboration is underway between the SGEM and Academic Emergency Medicine. What follows is a summary of the selected article the immediate post-publication synthesis from the SGEM podcast, commentary by the first author, and the subsequent discussion from the SGEM blog and other social media. Through this series, we hope to enhance the value, accessibility, and application of important, clinically relevant EM research. In this, the third SGEM HOP hosted collaboratively with CJEM, we discuss Olszynski et al.’s randomized crossover study evaluating the use of ultrasound simulator devices during critical care simulation.3
The collective response of electrons in an ultrathin foil target irradiated by an ultraintense (${\sim}6\times 10^{20}~\text{W}~\text{cm}^{-2}$) laser pulse is investigated experimentally and via 3D particle-in-cell simulations. It is shown that if the target is sufficiently thin that the laser induces significant radiation pressure, but not thin enough to become relativistically transparent to the laser light, the resulting relativistic electron beam is elliptical, with the major axis of the ellipse directed along the laser polarization axis. When the target thickness is decreased such that it becomes relativistically transparent early in the interaction with the laser pulse, diffraction of the transmitted laser light occurs through a so called ‘relativistic plasma aperture’, inducing structure in the spatial-intensity profile of the beam of energetic electrons. It is shown that the electron beam profile can be modified by variation of the target thickness and degree of ellipticity in the laser polarization.
The measured spatial-intensity distribution of the beam of protons accelerated from the rear side of a solid target irradiated by an intense (>1019 Wcm−2) laser pulse provides a diagnostic of the two-dimensional fast electron density profile at the target rear surface and thus the fast electron beam transport pattern within the target. An analytical model is developed, accounting for rear-surface fast electron sheath dynamics, ionization and projection of the resulting beam of protons. The sensitivity of the spatial-intensity distribution of the proton beam to the fast electron density distribution is investigated. An annular fast electron beam transport pattern with filamentary structure is inferred for the case of a thick diamond target irradiated at a peak laser intensity of 6 × 1019 Wcm−2.
We have deployed a network of autonomous photometers that continuously measures the night sky brightness in the visual region at two sky positions simultaneously, typically near the zenith and the second at an elevation angle of 20 degrees. The Photometers are calibrated as a network to better than 5.