We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The prevalence of congenital heart disease (CHD) in adults is rising necessitating a greater understanding of acquired diseases such as community-acquired pneumonia, which remains a leading cause of age-related mortality and morbidity in the general population. We hypothesise that the CHD population, given cardiopulmonary mechanics and altered immune function, bears a uniquely high risk for pneumonia-related hospitalisations and mortality.
Methods:
A countrywide cohort study was performed to calculate the relative risk and cumulative incidence of pneumonia hospitalisations and resultant 30-day mortality amongst the adult CHD population, matched 1:10 with non-CHD persons by gender, age, and adjusted for comorbidities. Cox proportional hazard regression quantified the impact of CHD severity and extracardiac defects.
Results:
The CHD cohort includes 17,162 adults. The majority demonstrate mild/moderate CHD complexity. The cumulative incidence of pneumonia hospitalisation was higher for adults with CHD (hazard ratio 1.90; 95% confidence interval: 1.74–2.06) than the comparison cohort. This risk was increased for those with extracardiac defects or a syndrome (hazard ratio: 4.34; 95% confidence interval: 3.39–5.54). Additionally, CHD individuals with severe/univentricular subtypes demonstrate a heightened risk compared to the non-CHD cohort (hazard ratio: 2.35; 95% confidence interval: 1.94–2.84), as well as compared to those with mild/moderate CHD (hazard ratio: 1.28; 95% confidence interval: 1.07–1.53). In addition, pneumonia hospitalisation mortality was elevated above the comparison population with a 30-day mortality rate ratio of 1.31 (95% confidence interval: 1.00–1.73).
Conclusion:
Adults with CHD are at elevated risk of pneumonia hospitalisations and pneumonia-associated mortality. This risk is further elevated in those with severe CHD and extracardiac defects.
Significant inter-centre variability in the intensity of endomyocardial biopsy surveillance for rejection following paediatric cardiac transplantation has been reported. Our aim was to determine if low-intensity biopsy surveillance with two scheduled biopsies in the first year would produce outcomes similar to published registry outcomes.
Methods:
A retrospective study of paediatric recipients transplanted between 2008 and 2014 using a low-intensity biopsy protocol consisting of two surveillance biopsies at 3 and 12–13 months in the first post-transplant year, then annually thereafter. Additional biopsies were performed based on echocardiographic and clinical surveillance. Excluded were recipients that were re-transplanted or multi-organ transplanted or were followed at another institution.
Results:
A total of 81 recipients in the first 13 months after transplant underwent an average of 2 (SD ± 1.3) biopsies, 24 ± 6.8 echocardiograms, and 17 ± 4.4 clinic visits per recipient. During the 13-month period, 19 recipients had 24 treated rejection episodes, with the first at an average of 2.8 months post-transplant. The 3-, 12-, 36-, and 60-month conditional on discharge graft survival were 100%, 98.8%, 98.8%, and 90.4%, respectively, comparable to reported figures in major paediatric registries. At a mean follow-up of 4.7 ± 2.1 years, four patients (4.9%) developed cardiac allograft vasculopathy, three (3.7%) developed a malignancy, and seven (8.6%) suffered graft loss.
Conclusion:
Rejection surveillance with a low-intensity biopsy protocol demonstrated similar intermediate-term outcomes and safety measures as international registries up to 5 years post-transplant.
Edited by
Alex S. Evers, Washington University School of Medicine, St Louis,Mervyn Maze, University of California, San Francisco,Evan D. Kharasch, Washington University School of Medicine, St Louis