We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Although interferon beta-1a (IFNß−1a), 1b (IFNß−1b), and fingolimod have been approved as multiple sclerosis (MS) treatments, they have not yet been included on the National List of Essential Medicines (NLEM) formulary in Thailand. This study aimed to evaluate the cost-utility of MS treatments compared with best supportive care (BSC) based on a societal perspective in Thailand.
Methods:
A Markov model with cost and health outcomes over a lifetime horizon with a 1-month cycle length was conducted for relapsing–remitting MS (RRMS) patients. Cost and outcome data were obtained from published studies, collected from major MS clinics in Thailand and a discount rate of 3 percent was applied. The incremental cost-effectiveness ratio (ICER) was calculated and univariate and probabilistic sensitivity analyses were performed.
Results:
When compared with BSC, the ICERs for patients with RRMS aged 35 years receiving fingolimod, IFNβ−1b, and IFNβ−1a were 33,000, 12,000, and 42,000 US dollars (USD) per quality-adjusted life-year (QALY) gained, respectively. At the Thai societal willingness to pay (WTP) threshold of USD 4,500 per QALY gained, BSC had the highest probability of being cost-effective (49 percent), whereas IFNβ−1b and fingolimod treatments showed lower chance being cost-effective at 25 percent and 18 percent, respectively.
Conclusions:
Compared with fingolimod and interferon treatments, BSC remains to be the most cost-effective treatment for RRMS in Thailand based on a WTP threshold of USD 4,500 per QALY gained. The results do not support the inclusion of fingolimod or interferon in the NLEM for the treatment of RRMS unless their prices are decreased or special schema arranged.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.