We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A generating set S for a group G is independent if the subgroup generated by
$S\setminus \{s\}$
is properly contained in G for all
$s \in S.$
We describe the structure of finite groups G such that there are precisely two numbers appearing as the cardinalities of independent generating sets for G.
Let G be a finite transitive group on a set
$\Omega $
, let
$\alpha \in \Omega $
, and let
$G_{\alpha }$
be the stabilizer of the point
$\alpha $
in G. In this paper, we are interested in the proportion
$$ \begin{align*} \frac{|\{\omega\in \Omega\mid \omega \textrm{ lies in a }G_{\alpha}\textrm{-orbit of cardinality at most 2}\}|}{|\Omega|}, \end{align*} $$
that is, the proportion of elements of
$\Omega $
lying in a suborbit of cardinality at most 2. We show that, if this proportion is greater than
$5/6$
, then each element of
$\Omega $
lies in a suborbit of cardinality at most 2, and hence G is classified by a result of Bergman and Lenstra. We also classify the permutation groups attaining the bound
$5/6$
.
We use these results to answer a question concerning the enumeration of Cayley graphs. Given a transitive group G containing a regular subgroup R, we determine an upper bound on the number of Cayley graphs on R containing G in their automorphism groups.
Let G be a permutation group on a set
$\Omega $
of size t. We say that
$\Lambda \subseteq \Omega $
is an independent set if its pointwise stabilizer is not equal to the pointwise stabilizer of any proper subset of
$\Lambda $
. We define the height of G to be the maximum size of an independent set, and we denote this quantity
$\textrm{H}(G)$
. In this paper, we study
$\textrm{H}(G)$
for the case when G is primitive. Our main result asserts that either
$\textrm{H}(G)< 9\log t$
or else G is in a particular well-studied family (the primitive large–base groups). An immediate corollary of this result is a characterization of primitive permutation groups with large relational complexity, the latter quantity being a statistic introduced by Cherlin in his study of the model theory of permutation groups. We also study
$\textrm{I}(G)$
, the maximum length of an irredundant base of G, in which case we prove that if G is primitive, then either
$\textrm{I}(G)<7\log t$
or else, again, G is in a particular family (which includes the primitive large–base groups as well as some others).
Given a group G and a subgroup H, we let
$\mathcal {O}_G(H)$
denote the lattice of subgroups of G containing H. This article provides a classification of the subgroups H of G such that
$\mathcal {O}_{G}(H)$
is Boolean of rank at least
$3$
when G is a finite alternating or symmetric group. Besides some sporadic examples and some twisted versions, there are two different types of such lattices. One type arises by taking stabilisers of chains of regular partitions, and the other arises by taking stabilisers of chains of regular product structures. As an application, we prove in this case a conjecture on Boolean overgroup lattices related to the dual Ore’s theorem and to a problem of Kenneth Brown.
Denote by m(G) the largest size of a minimal generating set of a finite group G. We estimate m(G) in terms of $\sum _{p\in \pi (G)}d_p(G),$ where we are denoting by dp(G) the minimal number of generators of a Sylow p-subgroup of G and by π(G) the set of prime numbers dividing the order of G.
Let $G$ be a finite group with two primitive permutation representations on the sets $\unicode[STIX]{x1D6FA}_{1}$ and $\unicode[STIX]{x1D6FA}_{2}$ and let $\unicode[STIX]{x1D70B}_{1}$ and $\unicode[STIX]{x1D70B}_{2}$ be the corresponding permutation characters. We consider the case in which the set of fixed-point-free elements of $G$ on $\unicode[STIX]{x1D6FA}_{1}$ coincides with the set of fixed-point-free elements of $G$ on $\unicode[STIX]{x1D6FA}_{2}$, that is, for every $g\in G$, $\unicode[STIX]{x1D70B}_{1}(g)=0$ if and only if $\unicode[STIX]{x1D70B}_{2}(g)=0$. We have conjectured in Spiga [‘Permutation characters and fixed-point-free elements in permutation groups’, J. Algebra299(1) (2006), 1–7] that under this hypothesis either $\unicode[STIX]{x1D70B}_{1}=\unicode[STIX]{x1D70B}_{2}$ or one of $\unicode[STIX]{x1D70B}_{1}-\unicode[STIX]{x1D70B}_{2}$ and $\unicode[STIX]{x1D70B}_{2}-\unicode[STIX]{x1D70B}_{1}$ is a genuine character. In this paper we give evidence towards the veracity of this conjecture when the socle of $G$ is a sporadic simple group or an alternating group. In particular, the conjecture is reduced to the case of almost simple groups of Lie type.
A permutation group G on a set Ω is said to be binary if, for every n ∈ ℕ and for every I, J ∈ Ωn, the n-tuples I and J are in the same G-orbit if and only if every pair of entries from I is in the same G-orbit to the corresponding pair from J. This notion arises from the investigation of the relational complexity of finite homogeneous structures.
Cherlin has conjectured that the only finite primitive binary permutation groups are the symmetric groups Sym(n) with their natural action, the groups of prime order, and the affine groups V ⋊ O(V) where V is a vector space endowed with an anisotropic quadratic form.
We prove Cherlin's conjecture, concerning binary primitive permutation groups, for those groups with socle isomorphic to PSL2(q), 2B2(q), 2G2(q) or PSU3(q). Our method uses the notion of a “strongly non-binary action”.
In this paper, we combine group-theoretic and combinatorial techniques to study $\wedge$-transitive digraphs admitting a cartesian decomposition of their vertex set. In particular, our approach uncovers a new family of digraphs that may be of considerable interest.
In this paper, we prove that the maximal order of a semiregular element in the automorphism group of a cubic vertex-transitive graph Γ does not tend to infinity as the number of vertices of Γ tends to infinity. This gives a solution (in the negative) to a conjecture of Peter Cameron, John Sheehan and the author [4, conjecture 2].
However, with an application of the positive solution of the restricted Burnside problem, we show that this conjecture holds true when Γ is either a Cayley graph or an arc-transitive graph.
We show that the permutation module over $ \mathbb{C} $ afforded by the action of ${\mathrm{Sp} }_{2m} ({2}^{f} )$ on its natural module is isomorphic to the permutation module over $ \mathbb{C} $ afforded by the action of ${\mathrm{Sp} }_{2m} ({2}^{f} )$ on the union of the right cosets of ${ \mathrm{O} }_{2m}^{+ } ({2}^{f} )$ and ${ \mathrm{O} }_{2m}^{- } ({2}^{f} )$.
It has long been known that there exist finite connected tetravalent arc-transitive graphs with arbitrarily large vertex-stabilizers. However, beside a well-known family of exceptional graphs, related to the lexicographic product of a cycle with an edgeless graph on two vertices, only a few such infinite families of graphs are known. In this paper, we present two more families of tetravalent arc-transitive graphs with large vertex-stabilizers, each significant for its own reason.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.