We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Continued progress in artificial intelligence (AI) and associated demonstrations of superhuman performance have raised the expectation that AI can revolutionize scientific discovery in general and materials science specifically. We illustrate the success of machine learning (ML) algorithms in tasks ranging from machine vision to game playing and describe how existing algorithms can also be impactful in materials science, while noting key limitations for accelerating materials discovery. Issues of data scarcity and the combinatorial nature of materials spaces, which limit application of ML techniques in materials science, can be overcome by exploiting the rich scientific knowledge from physics and chemistry using additional AI techniques such as reasoning, planning, and knowledge representation. The integration of these techniques in materials-intelligent systems will enable AI governance of the scientific method and autonomous scientific discovery.
The Rohingya refugee crisis in Bangladesh continues to overburden humanitarian resources and undermine the health and security of over 900,000 people. Spatial, sector-specific information is required to better understand the needs of vulnerable populations, such as women and girls, and to target interventions with improved efficiency and effectiveness.
Aim:
The aim of this study was to create a gender-based vulnerability index and explore the geospatial and thematic variations in the gender-based vulnerability of Rohingya refugees residing in Bangladesh by utilizing pre-existing, open-source data.
Methods:
Data sources included remotely-sensed REACH data on humanitarian infrastructure, UN Population Fund resource availability data, and the Needs and Population Monitoring Survey conducted by the International Organization for Migration in October 2017. Gaps in data were addressed through probabilistic interpolation. A vulnerability index was designed through a process of literature review, variable selection and thematic grouping, normalization, and scorecard creation. Pareto ranking was employed to rank sites based on vulnerability scoring. Spatial autocorrelation of vulnerability was analyzed with the Global and Anselin Local Moran’s I applied to both combined vulnerability index rank and disaggregated thematic ranking.
Results:
Twenty-four percent of settlements were ranked as most vulnerable, with 30 highly vulnerable clusters identified predominantly in the Upazila of Sadar. Five settlements in Dhokkin, Somitipara, and Pahartoli were categorized as less vulnerable outliers amongst highly vulnerable neighboring sites. Security- and health-related variables appear to be the largest drivers of gender-specific vulnerability in Cox’s Bazar. Clusters of low security and education vulnerability measures are shown near the refugee ingress point near Gundum.
Discussion:
The humanitarian space produces tremendous amounts of data that can be analyzed with spatial statistics to better target research and programmatic intervention. The critical utilization of these data and validation of vulnerability indexes is required to improve the international response to the global refugee crisis.
The objective of this study was to determine the serotype distribution and antibiotic resistance of invasive pneumococcal disease (IPD) strains in children from Lima, Peru, before and after the introduction of the 7-valent pneumococcal conjugate vaccine (PCV7), which was introduced in the national immunisation program on 2009. We conducted a prospective, multicentre, passive surveillance IPD study during 2006–2008 and 2009–2011, before and right after the introduction of PCV7 in Peru. The study was performed in 11 hospitals and five private laboratories in Lima, Peru, in patients <18 years old, with sterile site cultures yielding Streptococcus pneumoniae. In total 159 S. pneumoniae isolates were recovered. There was a decrease in the incidence of IPD in children <2 years old after the introduction of PCV7 (18.4/100 000 vs. 5.1/100 000, P = 0.004). Meningitis cases decreased significantly in the second period (P = 0.036) as well as the overall case fatality rate (P = 0.025), including a decreased case fatality rate of pneumonia (16.3% to 0%, P = 0.04). PCV7 serotypes showed a downward trend. Vaccine-preventable serotypes caused 78.9% of IPD cases, mainly 14, 6B, 5, 19F and 23F. A non-significant increase in erythromycin resistance was reported. Our findings suggest that the introduction of PCV7 led to a significant decrease of IPD in children under 2 years old and in the overall case fatality rate.
In the light of Chile’s comprehensive new restriction on unhealthy food marketing, we analyse food advertising on Chilean television prior to the first and final phases of implementation of the restriction.
Design
Content analysis of marketing strategies of 6976 advertisements, based on products’ nutritional quality. Statistical analysis of total and child audience reached using television ratings data.
Setting
Advertising from television aired between 06.00 and 00.00 hours during two random composite weeks across April–May 2016 from the four broadcast and four cable channels with the largest youth audiences.
Results
Food ads represented 16 % of all advertising; 34 % of food ads featured a product high in energy, saturated fats, sugars and/or salt (HEFSS), as defined by the initial regulation. HEFSS ads were seen by more children and contained more child-directed marketing strategies than ads without HEFSS foods. If HEFSS advertising was restricted only in programmes where 20 % are children aged 4–12 years, 31 % of children’s and 8 % of the general audience’s HEFSS advertising exposure would be reduced. The newest 06.00–22.00 hours restriction captures 80 % of all audience exposure.
Conclusions
HEFSS advertising was seen by a large proportion of children before Chile’s regulation. Chile’s first implementation based on audience composition should reduce a third of this exposure and its second restriction across the television day should eliminate most of the exposure. The current study is a crucial first step in evaluating how Chile’s regulation efforts will impact children’s diets and obesity prevalence.
The care of patients with CHD remains a challenge in low- and middle-income countries. Their health systems have not been able to achieve consistently high performance in this field. The large volume of patients, manpower constraints, inconsistencies in the level and type of background training of the teams caring for this patient population, and the inadequate quality control systems are some of the barriers to achieving excellence of care. We describe three different international projects supporting the paediatric cardiac surgical and paediatric cardiac intensive care programmes in Latin America, Asia, and the Caribbean.
TAOS II is a next-generation occultation survey with the goal of measuring the size distribution of the small end of the Kuiper Belt (objects with diameters 0.5–30 km). Such objects have magnitudes r > 30, and are thus undetectable by direct imaging. The project will operate three telescopes at San Pedro Mártir Observatory in Baja California, México. Each telescope will be equipped with a custom-built camera comprised of a focal-plane array of CMOS imagers. The cameras will be capable of reading out image data from 10,000 stars at a cadence of 20 Hz. The telescopes will monitor the same set of stars simultaneously to search for coincident occultation detections, thus minimising the false-positive rate. This talk described the project, and reported on the progress of the development of the survey infrastructure.
Childhood overweight and obesity are worldwide public health problems and risk factors for chronic diseases. The presence of SNP in several genes has been associated with the presence of obesity. A total of 580 children (8–13 years old) from Queretaro, Mexico, participated in this cross-sectional study, which evaluated the associations of rs9939609 (fat mass obesity-associated (FTO)), rs17782313 (melanocortin 4 receptor (MC4R)) and rs6548238 (transmembrane protein 18 (TMEM18)) SNP with obesity and metabolic risk factors. Overweight and obesity prevalence was 19·8 and 19·1 %, respectively. FTO, MC4R and TMEM18 risk allele frequency was 17, 9·8 and 89·5 %, respectively. A significant association between FTO homozygous and MC4R heterozygous risk alleles and obesity was found (OR 3·9; 95 % CI 1·46, 10·22, and OR 2·1; 95 % CI 1·22, 3·71; respectively). The FTO heterozygous subjects showed higher systolic and diastolic blood pressures, compared with the homozygous for the ancestral allele subjects. These results remain significant after considering adiposity as a covariate. The FTO and MC4R genotypes were not significantly associated with total cholesterol, HDL-cholesterol and insulin concentration. No association was found between TMEM18 risk allele and obesity and/or metabolic alterations. Our results show that, in addition to a higher BMI, there is also an association of the risk genotype with blood pressure in the presence of the FTO risk genotype. The possible presence of a risk genotype in obese children must be considered to offer a more comprehensive therapeutic approach in order to delay and/or prevent the development of chronic diseases.
In response to rapidly growing rates of comorbidity among psychiatric disorders, clinical scientists have become interested in identifying transdiagnostic processes that can help explain dysfunction across diagnostic categories (e.g., Kring & Sloan, 2009). One factor that has received a great deal of attention is that of emotion regulation, namely, the ability to modulate the intensity and/or duration of emotional states (e.g., Cicchetti, Ackerman, & Izard, 1995; Gross, 1998). Recent theoretical and empirical work has begun to emphasize the role that emotion regulation plays in the temporal comorbidity between internalizing and externalizing conditions (e.g., Aldao & De Los Reyes, 2015; De Los Reyes & Aldao, 2015; Drabick & Kendall, 2010; Jarrett & Ollendick, 2008; Patrick & Hajcak, 2016). However, close inspection of this work reveals two very pertinent areas of growth: (a) this literature is characterized by mixed findings that are likely explained, in part, by methodological heterogeneity; and (b) emotion regulation tends to be studied in relatively narrow terms. To address these issues, we provide a series of recommendations for facilitating cross-study comparisons and leveraging multifaceted approaches to studying emotion regulation processes within a developmental psychopathology framework. We hope that our perspective can enhance the organization and growth of this very important area of inquiry, and ultimately result in more effective prevention and treatment programs.
It has been reported that the addition of liquid rubbers, like poly(dimethylsiloxane) (PDMS), to epoxy resins alter the final morphology, increase the toughness and influence the curing kinetics. Due to immiscibility, there is phase separation of the elastomeric phase during curing giving rise to microdomains embedded in the epoxic matrix. The resultant heterogeneous morphology obtained after the reaction controls to an important extent the properties of the epoxy composite. Here we report a method to obtain well-dispersed rubber nanodomains of silyl-diglycidyl ether terminated polydimethyl siloxane (PDMS-DGE) in diglycidyl ether of bisphenol-A (DGEBA) epoxy by using a prepolymerization step. Light scattering and optical microscopy showed that initial mixing of pre-polymerized rubber produced phase separation with micron-scale droplet formation. However, as the curing reaction proceeded, the rubber domains decreased below optical resolution, light scattering intensity reached a maximum and then decreased. Finally, rubber nanodomains of about 100 nm size were formed at the end of curing reaction, as revealed by transmission electron microscopy (TEM). The pre-polymerization step induced a two-fold increase in gel time, tgel, due to lesser active groups available for reaction. Strikingly, tensile modulus and toughness increased, suggesting rubber-epoxy interaction. The final nanocomposite also exhibited higher thermal stability and char formation.
Nowadays the aeronautical industry keeps strict quality standards in its dimensional specifications, mechanical properties and microstructural characteristics. Therefore, the involved manufacturing processes require keeping high standards. The nickel based superalloys are present in many components of the jet engines, being the Inconel 718MR superalloy the most common, making up to 50% of the jet engine. This is designed to resist high temperatures, corrosion and creep. The process of rotary forging is a manufacturing process that is currently under scientific and technological development in the aeronautical industry. An Avrami model coupled with a commercial FEM platform (DEFORMTM 3D) was developed to evaluate the average grain size, as a function of the working conditions at 980 °C and 1000 °C. The results provide a better understanding of the influence of temperature in the grain size evolution during the rotary forging process, compared with previous reports.
Dynamic mechanical properties of polypropylene (PP) and grafted polypropylene (PP-g-MA) composites reinforced with acetylated wheat straw fibers (WSF) is reported in this work. The materials were prepared with different fiber particle sizes (40, 80 and 140 U.S. mesh) and at different fiber contents (5, 10 and 15 wt.%). The PP and PP-g-MA composites, where anhydride maleic (MA) was used as coupling agent, were obtained using a twin-screw extruder; whereas an injection-molding machine molded the composite pellets into testing specimens. To observe the morphology of the composites, micrographs were taken with an optical microscope. The Dynamic mechanical properties were analyzed using a torsional rheometer. The morphological analysis showed a high porous structure somehow similar to foamed materials. The storage modulus (G′) increased by increasing the fiber content, and decreased with fiber particle sizes for the PP composites. Meanwhile, the use of the coupling agent additive promoted a modulus increase due to higher fiber-polymer interaction, from better adhesion and chemical bonds formation between the fibers-coupling agent-PP.
To assess the impact of a novel, silver-coated needleless connectors (NCs) on central-line–associated bloodstream infection (CLABSI) rates compared with a mechanically identical NCs without a silver coating.
DESIGN
Prospective longitudinal observation study
SETTING
Two 500-bed university hospitals
PATIENTS
All hospitalized adults from November 2009 to June 2011 with non-hemodialysis central lines
INTERVENTIONS
Hospital A started with silver-coated NCs and switched to standard NCs in September 2010; hospital B started with standard NCs and switched to silver-coated NCs. The primary outcome was the difference revealed by Poisson multivariate regression in CLABSI rate using standard Centers for Disease Control and Prevention surveillance definitions. The secondary outcome was a comparison of organism-specific CLABSI rates by NC type.
RESULTS
Among 15,845 hospital admissions, 140,186 central-line days and 221 CLABSIs were recorded during the study period. In a multivariate model, the CLABSI rate per 1,000 central-line days was lower with silver-coated NCs than with standard NCs (1.21 vs 1.79; incidence rate ratio=0.68 [95% CI: 0.52–0.89], P=.005). A lower CLABSI rate per 1,000 central-line days for the silver-coated NCs versus the standard NCs was observed with S. aureus (0.11 vs 0.30, P=.02), enterococci (0.10 vs 0.27, P=.03), and Gram-negative organisms (0.28 vs 0.63, P=.003) but not with coagulase-negative staphylococci (0.31 vs 0.36) or Candida spp. (0.42 vs 0.40).
CONCLUSIONS
The use of silver-coated NCs decreased the CLABSI rate by 32%. CLABSI reduction efforts should include efforts to minimize contamination of NCs.
The Bastion of San Pedro is part of the defensive infrastructure projected by Spanish colonizers in San Francisco de Campeche City, in order to protect the city and their inhabitants from pirates who ravaged the region during the XVIth and XIXth centuries. The bastion is a masonry structure built by using calcareous materials according the Spanish procedures from the edge. Since its construction, it has been under the synergetic interaction of natural and anthropogenic factors that promote degradation. In this study optical microscopy (MO) and scanning electron microscopy coupled to a dispersive analysis system (SEM/EDS) were used in order to analyze the stratigraphic profile of mortar weathered samples collected from walls of the Bastion of San Pedro. According the results, the samples were formed by three substrata: an upper external layer in contact with the environment (100 to 300 µm), the other one is an inner layer with thickness around 100 to 400 µm. The last substrate was formed by the mortar matrix composed by elements such as C, O, Ca, Si and Al, that indicate their mineral origin. By the other hand, it is important to note that the upper layer contained higher proportion of C respect to the other layers. It is probably major consequence of biomass encrustation rather that atmospheric pollution according to the particular environmental conditions surrounding the building.
In this study electrochemical and surface analysis were carried out in order to provide preliminary information to diagnose the state of conservation of two bronze bells from two Colonial religious building from San Francisco de Campeche City: The Cathedral of Nuestra Señora de la Purísima Concepción and the Ex-temple of San José. Small corroded bronze samples were retired from each bell and analyzed by using optical microscopy in order to observe the distribution of the oxides over metal surface. Complementary XRD analysis was used to identify crystalline phases formed as a consequence of bells interaction with the urban tropical environment of this city. Electrochemical techniques such as linear polarization resistance (Rp) and potentiodynamic curve (CP) were conducted “in situ” in order to evaluate the behavior of bell bronze patinas under the action of two artificial solutions that recreate typical electrolyte formed over corroded metal surfaces in urban environments.