We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
The rapid spread of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) throughout key regions of the United States in early 2020 placed a premium on timely, national surveillance of hospital patient censuses. To meet that need, the Centers for Disease Control and Prevention’s National Healthcare Safety Network (NHSN), the nation’s largest hospital surveillance system, launched a module for collecting hospital coronavirus disease 2019 (COVID-19) data. We present time-series estimates of the critical hospital capacity indicators from April 1 to July 14, 2020.
Design:
From March 27 to July 14, 2020, the NHSN collected daily data on hospital bed occupancy, number of hospitalized patients with COVID-19, and the availability and/or use of mechanical ventilators. Time series were constructed using multiple imputation and survey weighting to allow near–real-time daily national and state estimates to be computed.
Results:
During the pandemic’s April peak in the United States, among an estimated 431,000 total inpatients, 84,000 (19%) had COVID-19. Although the number of inpatients with COVID-19 decreased from April to July, the proportion of occupied inpatient beds increased steadily. COVID-19 hospitalizations increased from mid-June in the South and Southwest regions after stay-at-home restrictions were eased. The proportion of inpatients with COVID-19 on ventilators decreased from April to July.
Conclusions:
The NHSN hospital capacity estimates served as important, near–real-time indicators of the pandemic’s magnitude, spread, and impact, providing quantitative guidance for the public health response. Use of the estimates detected the rise of hospitalizations in specific geographic regions in June after they declined from a peak in April. Patient outcomes appeared to improve from early April to mid-July.
We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding of Earth's sensitivity to carbon dioxide, finds that permafrost thaw could release more carbon emissions than expected and that the uptake of carbon in tropical ecosystems is weakening. Adverse impacts on human society include increasing water shortages and impacts on mental health. Options for solutions emerge from rethinking economic models, rights-based litigation, strengthened governance systems and a new social contract. The disruption caused by COVID-19 could be seized as an opportunity for positive change, directing economic stimulus towards sustainable investments.
Technical summary
A synthesis is made of ten fields within climate science where there have been significant advances since mid-2019, through an expert elicitation process with broad disciplinary scope. Findings include: (1) a better understanding of equilibrium climate sensitivity; (2) abrupt thaw as an accelerator of carbon release from permafrost; (3) changes to global and regional land carbon sinks; (4) impacts of climate change on water crises, including equity perspectives; (5) adverse effects on mental health from climate change; (6) immediate effects on climate of the COVID-19 pandemic and requirements for recovery packages to deliver on the Paris Agreement; (7) suggested long-term changes to governance and a social contract to address climate change, learning from the current pandemic, (8) updated positive cost–benefit ratio and new perspectives on the potential for green growth in the short- and long-term perspective; (9) urban electrification as a strategy to move towards low-carbon energy systems and (10) rights-based litigation as an increasingly important method to address climate change, with recent clarifications on the legal standing and representation of future generations.
Social media summary
Stronger permafrost thaw, COVID-19 effects and growing mental health impacts among highlights of latest climate science.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with
$\sim$
15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination
$+41^\circ$
made over a 288-MHz band centred at 887.5 MHz.
We describe here efforts to create and study magnetized electron–positron pair plasmas, the existence of which in astrophysical environments is well-established. Laboratory incarnations of such systems are becoming ever more possible due to novel approaches and techniques in plasma, beam and laser physics. Traditional magnetized plasmas studied to date, both in nature and in the laboratory, exhibit a host of different wave types, many of which are generically unstable and evolve into turbulence or violent instabilities. This complexity and the instability of these waves stem to a large degree from the difference in mass between the positively and the negatively charged species: the ions and the electrons. The mass symmetry of pair plasmas, on the other hand, results in unique behaviour, a topic that has been intensively studied theoretically and numerically for decades, but experimental studies are still in the early stages of development. A levitated dipole device is now under construction to study magnetized low-energy, short-Debye-length electron–positron plasmas; this experiment, as well as a stellarator device that is in the planning stage, will be fuelled by a reactor-based positron source and make use of state-of-the-art positron cooling and storage techniques. Relativistic pair plasmas with very different parameters will be created using pair production resulting from intense laser–matter interactions and will be confined in a high-field mirror configuration. We highlight the differences between and similarities among these approaches, and discuss the unique physics insights that can be gained by these studies.
Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
Feeding fodder beet (FB) to dairy cows in early lactation has recently been adopted by New Zealand dairy producers despite limited definition of feeding and grazing management practices that may prevent acute and sub-acute ruminal acidosis (SARA). This modelling study aimed to characterize changes of rumen pH, milk production and total discomfort from FB and define practical feeding strategies of a mixed herbage and FB diet. The deterministic, dynamic and mechanistic model MINDY was used to compare a factorial arrangement of FB allowance (FBA), herbage allowance (HA) and time of allocation. The FBA were 0, 2, 4 or 7 kg dry matter (DM)/cow/day (0FB, 2FB, 4FB and 7FB, respectively) and HA were 18, 24 or 48 kg DM/cow/day above ground. All combinations were offered either in the morning or afternoon or split across two equal meals. Milk production from 2FB diets was similar to 0FB but declined by 4 and 16% when FB increased to 4 and 7 kg DM, respectively. MINDY predicted that 7FB would result in SARA and that rumen conditions were sub-optimal even at moderate FBA (pH < 5.6 for 160 and 90 min/day, 7FB and 4FB respectively). Pareto front analysis identified the best compromise between high milk production and low total discomfort was achieved by splitting the 2FB diet into two equal meals fed each day with 48 kg DM herbage. However, due to low milk response and high risk of acidosis, it is concluded that FB is a poor supplement for lactating dairy cows.
This project will work closely with existing service partners involved in street level services and focus on testing and evaluating three approaches for street level interventions for youth who are homeless and who have severe or moderate mentally illness. Youth will be asked to choose their preferred service approach:
Housing First related initiatives focused on interventions designed to move youth to appropriate and available housing and ongoing housing supports.
Treatment First initiatives to provide Mental Health/Addiction supports and treatment solutions, and; Simultaneous attention to both Housing and Treatment Together
Our primary objective is to understand the service delivery preferences of homeless youth and understand the outcomes of these choices. Our research questions include:
1. Which approaches to service are chosen by youth?
2. What are the differences and similarities between groups choosing each approach?
3. What are the critical ingredients needed to effectively implement services for homeless youth from the perspectives of youth, families and service providers?
Focus groups with staff and family members will occur to assist in understanding the nature of each of service approach, changes that evolve within services, & facilitators and barriers to service delivery. This work will be important in determining which approach is chosen by youth and why. Evaluating the outcomes with each choice will provide valuable information about outcomes for the service options chosen by youth. This assist in better identifying weaknesses in the services offered and inform further development of treatment options that youth will accept.
The prevalence of many diseases in pigs displays seasonal distributions. Despite growing concerns about the impacts of climate change, we do not yet have a good understanding of the role that weather factors play in explaining such seasonal patterns. In this study, national and county-level aggregated abattoir inspection data were assessed for England and Wales during 2010–2015. Seasonally-adjusted relationships were characterised between weekly ambient maximum temperature and the prevalence of both respiratory conditions and tail biting detected at slaughter. The prevalence of respiratory conditions showed cyclical annual patterns with peaks in the summer months and troughs in the winter months each year. However, there were no obvious associations with either high or low temperatures. The prevalence of tail biting generally increased as temperatures decreased, but associations were not supported by statistical evidence: across all counties there was a relative risk of 1.028 (95% CI 0.776–1.363) for every 1 °C fall in temperature. Whilst the seasonal patterns observed in this study are similar to those reported in previous studies, the lack of statistical evidence for an explicit association with ambient temperature may possibly be explained by the lack of information on date of disease onset. There is also the possibility that other time-varying factors not investigated here may be driving some of the seasonal patterns.
Sulfur-bearing monazite-(Ce) occurs in silicified carbonatite at Eureka, Namibia, forming rims up to ~0.5 mm thick on earlier-formed monazite-(Ce) megacrysts. We present X-ray photoelectron spectroscopy data demonstrating that sulfur is accommodated predominantly in monazite-(Ce) as sulfate, via a clino-anhydrite-type coupled substitution mechanism. Minor sulfide and sulfite peaks in the X-ray photoelectron spectra, however, also indicate that more complex substitution mechanisms incorporating S2– and S4+ are possible. Incorporation of S6+ through clino-anhydrite-type substitution results in an excess of M2+ cations, which previous workers have suggested is accommodated by auxiliary substitution of OH– for O2–. However, Raman data show no indication of OH–, and instead we suggest charge imbalance is accommodated through F– substituting for O2–. The accommodation of S in the monazite-(Ce) results in considerable structural distortion that may account for relatively high contents of ions with radii beyond those normally found in monazite-(Ce), such as the heavy rare earth elements, Mo, Zr and V. In contrast to S-bearing monazite-(Ce) in other carbonatites, S-bearing monazite-(Ce) at Eureka formed via a dissolution–precipitation mechanism during prolonged weathering, with S derived from an aeolian source. While large S-bearing monazite-(Ce) grains are likely to be rare in the geological record, formation of secondary S-bearing monazite-(Ce) in these conditions may be a feasible mineral for dating palaeo-weathering horizons.
Basal ice of glaciers and ice sheets frequently contains a well-developed stratification of distinct, semi-continuous, alternating layers of debris-poor and debris-rich ice. Here, the nature and distribution of shear within stratified basal ice are assessed through the anisotropy of magnetic susceptibility (AMS) of samples collected from Matanuska Glacier, Alaska. Generally, the AMS reveals consistent moderate-to-strong fabrics reflecting simple shear in the direction of ice flow; however, AMS is also dependent upon debris content and morphology. While sample anisotropy is statistically similar throughout the sampled section, debris-rich basal ice composed of semi-continuous mm-scale layers (the stratified facies) possesses well-defined triaxial to oblate fabrics reflecting shear in the direction of ice flow, whereas debris-poor ice containing mm-scale star-shaped silt aggregates (the suspended facies) possesses nearly isotropic fabrics. Thus, deformation within the stratified basal ice appears concentrated in debris-rich layers, likely the result of decreased crystal size and greater availability of unfrozen water associated with high debris content. These results suggest that variations in debris-content over small spatial scales influence ice rheology and deformation in the basal zone.
The rocky shores of the north-east Atlantic have been long studied. Our focus is from Gibraltar to Norway plus the Azores and Iceland. Phylogeographic processes shape biogeographic patterns of biodiversity. Long-term and broadscale studies have shown the responses of biota to past climate fluctuations and more recent anthropogenic climate change. Inter- and intra-specific species interactions along sharp local environmental gradients shape distributions and community structure and hence ecosystem functioning. Shifts in domination by fucoids in shelter to barnacles/mussels in exposure are mediated by grazing by patellid limpets. Further south fucoids become increasingly rare, with species disappearing or restricted to estuarine refuges, caused by greater desiccation and grazing pressure. Mesoscale processes influence bottom-up nutrient forcing and larval supply, hence affecting species abundance and distribution, and can be proximate factors setting range edges (e.g., the English Channel, the Iberian Peninsula). Impacts of invasive non-native species are reviewed. Knowledge gaps such as the work on rockpools and host–parasite dynamics are also outlined.
The pig industry faces many animal welfare issues. Among these, biting behaviour has a high incidence. It is indicative of an existing problem in biters and is a source of physical damage and psychological stress for the victims. We categorize this behaviour into aggressive and non-aggressive biting, the latter often being directed towards the tail. This review focusses specifically on predisposing factors in early life, comprising the prenatal and postnatal periods up to weaning, for the expression of aggressive and non-aggressive biting later in life. The influence of personality and coping style has been examined in a few studies. It varies according to these studies and, thus, further evaluation is needed. Regarding the effect of environmental factors, the number of scientific papers is low (less than five papers for most factors). No clear influence of prenatal factors has been identified to date. Aggressive biting is reduced by undernutrition, cross-fostering and socialization before weaning. Non-aggressive biting is increased by undernutrition, social stress due to competition and cross-fostering. These latter three factors are highly dependent on litter size at birth. The use of familiar odours may contribute to reducing biting when pigs are moved from one environment to another by alleviating the level of stress associated with novelty. Even though the current environment in which pigs are expressing biting behaviours is of major importance, the pre-weaning environment should be optimized to reduce the likelihood of this problem.
Research was conducted from 2013 to 2015 across three sites in Mississippi to evaluate corn response to sublethal paraquat or fomesafen (105 and 35 g ai ha−1, respectively) applied PRE, or to corn at the V1, V3, V5, V7, or V9 growth stages. Fomesafen injury to corn at three d after treatment (DAT) ranged from 0% to 38%, and declined over time. Compared with the nontreated control (NTC), corn height 14 DAT was reduced approximately 15% due to fomesafen exposure at V5 or V7. Exposure at V1 or V7 resulted in 1,220 and 1,110 kg ha−1 yield losses, respectively, compared with the NTC, but yield losses were not observed at any other growth stage. Fomesafen exposure at any growth stage did not affect corn ear length or number of kernel rows relative to the NTC. Paraquat injury to corn ranged from 26% to 65%, depending on growth stage and evaluation interval. Corn exposure to paraquat at V3 or V5 consistently caused greater injury across evaluation intervals, compared with other growth stages. POST timings of paraquat exposure resulted in corn height reductions of 13% to 50%, except at V7, which was most likely due to rapid internode elongation at that stage. Likewise, yield loss occurred after all exposure times of paraquat except PRE, compared with the NTC. Corn yield was reduced 1,740 to 5,120 kg ha−1 compared with the NTC, generally worsening as exposure time was delayed. Paraquat exposure did not reduce corn ear length, compared with the NTC, at any growth stage. However, paraquat exposure at V3 or V5 was associated with reduction of kernel rows by 1.1 and 1.7, respectively, relative to the NTC. Paraquat and fomesafen applications near corn should be avoided if conditions are conducive for off-target movement, because significant injury and yield loss can result.
Objectives: Caregivers of youth with heavy prenatal alcohol exposure report impaired communication, which can significantly impact quality of life. Using data collected as part of the Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD), we examined whether cognitive variables predict communication ability of youth with histories of heavy prenatal alcohol exposure. Methods: Subjects (ages 10–16 years) comprised two groups: adolescents with heavy prenatal alcohol exposure (AE) and non-exposed controls (CON). Selected measures of executive function (NEPSY, Delis-Kaplan Executive Function System), working memory (CANTAB), and language were tested in the child, while parents completed communication ratings (Vineland Adaptive Behavior Scales – Second Edition). Separate multiple regression analyses determined which cognitive domains predicted communication ability. A final, global model of communication comprised the three cognitive models. Results: Spatial Working Memory and Inhibition significantly contributed to communication ability across groups. Twenty Questions performance related to communication ability in the CON group only while Word Generation performance related to communication ability in the AE group only. Effects remained significant in the global model, with the exception of Spatial Working Memory. Conclusions: Both groups displayed a relation between communication and Spatial Working Memory and Inhibition. Stronger communication ability related to stronger verbal fluency in the AE group and Twenty Questions performance in the CON group. These findings suggest that alcohol-exposed adolescents may rely more heavily on learned verbal storage or fluency for daily communication while non-exposed adolescents may rely more heavily on abstract thinking and verbal efficiency. Interventions aimed at aspects of executive function may be most effective at improving communication ability of these individuals. (JINS, 2018, 24, 1026–1037)
A summary is given of the present state of our knowledge of High-Mass X-ray Binaries (HMXBs), their formation and expected future evolution. Among the HMXB-systems that contain neutron stars, only those that have orbital periods upwards of one year will survive the Common-Envelope (CE) evolution that follows the HMXB phase. These systems may produce close double neutron stars with eccentric orbits. The HMXBs that contain black holes do not necessarily evolve into a CE phase. Systems with relatively short orbital periods will evolve by stable Roche-lobe overflow to short-period Wolf-Rayet (WR) X-ray binaries containing a black hole. Two other ways for the formation of WR X-ray binaries with black holes are identified: CE-evolution of wide HMXBs and homogeneous evolution of very close systems. In all three cases, the final product of the WR X-ray binary will be a double black hole or a black hole neutron star binary.
Little is known about terrestrial climate dynamics in the Levant during the penultimate interglacial-glacial period. To decipher the palaeoclimatic history of the Marine Oxygen Isotope Stage (MIS) 6 glacial period, a well-dated stalagmite (~194 to ~154 ka) from Kanaan Cave on the Mediterranean coast in Lebanon was analyzed for its petrography, growth history, and stable isotope geochemistry. A resolved climate record has been recovered from this precisely U–Th dated speleothem, spanning the late MIS 7 and early MIS 6 at low resolution and the mid–MIS 6 at higher resolution. The stalagmite grew discontinuously from ~194 to ~163 ka. More consistent growth and higher growth rates between ~163 and ~154 ka are most probably linked to increased water recharge and thus more humid conditions. More distinct layering in the upper part of the speleothem suggests strong seasonality from ~163 ka to ~154 ka. Short-term oxygen and carbon isotope excursions were found between ~155 and ~163 ka. The inferred Kanaan Cave humid intervals during the mid–MIS 6 follow variations of pollen records in the Mediterranean basins and correlate well with the synthetic Greenland record and East Asian summer monsoon interstadial periods, indicating short warm/wet periods similar to the Dansgaard-Oeschger events during MIS 4–3 in the eastern Mediterranean region.
We report the results of Long Baseline Array observations made in 2001 of ten southern sources proposed by Mattox et al. as counterparts to EGRET >100 MeV gamma-ray sources. Source structures are compared with published data where available and possible superluminal motions identified in several cases. The associations are examined in the light of Fermi observations, indicating that the confirmed counterparts tend to have radio properties consistent with other identifications, including flat radio spectral index, high brightness temperature, greater radio variability, and higher core dominance.
Full thickness rotator cuff tears (RCT) and the associated muscle degeneration that results due to this injury presents a significant clinical burden. The prevention or recovery from this degeneration requires the synchronized behavior of many cells that participate in regeneration. Strategies that tune the inflammatory cascade that is initiated after injury serves as a powerful way to influence tissue repair. Here, we use the local, sustained delivery of the immunomodulatory small molecule FTY720 to examine whether the recruitment of pro-regenerative myeloid cells affects the healing outcome. We find that PLGA microparticles have an atrophic effect on the muscle that is ameliorated with the release of FTY720. However, the inability of FTY720 delivery to induce pro-regenerative monocyte and macrophage recruitment and our findings demonstrating enrichment of CD4+ T cells suggest that effects of this small molecule are context dependent and that the underlying mechanisms behind this RCT associated muscle degeneration require further studies.