We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To evaluate whether incorporating mandatory prior authorization for Clostridioides difficile testing into antimicrobial stewardship pharmacist workflow could reduce testing in patients with alternative etiologies for diarrhea.
Design:
Single center, quasi-experimental before-and-after study.
Setting:
Tertiary-care, academic medical center in Ann Arbor, Michigan.
Patients:
Adult and pediatric patients admitted between September 11, 2019 and December 10, 2019 were included if they had an order placed for 1 of the following: (1) C. difficile enzyme immunoassay (EIA) in patients hospitalized >72 hours and received laxatives, oral contrast, or initiated tube feeds within the prior 48 hours, (2) repeat molecular multiplex gastrointestinal pathogen panel (GIPAN) testing, or (3) GIPAN testing in patients hospitalized >72 hours.
Intervention:
A best-practice alert prompting prior authorization by the antimicrobial stewardship program (ASP) for EIA or GIPAN testing was implemented. Approval required the provider to page the ASP pharmacist and discuss rationale for testing. The provider could not proceed with the order if ASP approval was not obtained.
Results:
An average of 2.5 requests per day were received over the 3-month intervention period. The weekly rate of EIA and GIPAN orders per 1,000 patient days decreased significantly from 6.05 ± 0.94 to 4.87 ± 0.78 (IRR, 0.72; 95% CI, 0.56–0.93; P = .010) and from 1.72 ± 0.37 to 0.89 ± 0.29 (IRR, 0.53; 95% CI, 0.37–0.77; P = .001), respectively.
Conclusions:
We identified an efficient, effective C. difficile and GIPAN diagnostic stewardship approval model.
Clinical Enterobacteriacae isolates with a colistin minimum inhibitory concentration (MIC) ≥4 mg/L from a United States hospital were screened for the mcr-1 gene using real-time polymerase chain reaction (RT-PCR) and confirmed by whole-genome sequencing. Four colistin-resistant Escherichia coli isolates contained mcr-1. Two isolates belonged to the same sequence type (ST-632). All subjects had prior international travel and antimicrobial exposure.
To evaluate the association between novel pre- and post-operative biomarker levels and 30-day unplanned readmission or mortality after paediatric congenital heart surgery.
Methods:
Children aged 18 years or younger undergoing congenital heart surgery (n = 162) at Johns Hopkins Hospital from 2010 to 2014 were enrolled in the prospective cohort. Collected novel pre- and post-operative biomarkers include soluble suppression of tumorgenicity 2, galectin-3, N-terminal prohormone of brain natriuretic peptide, and glial fibrillary acidic protein. A model based on clinical variables from the Society of Thoracic Surgery database was developed and evaluated against two augmented models.
Results:
Unplanned readmission or mortality within 30 days of cardiac surgery occurred among 21 (13%) children. The clinical model augmented with pre-operative biomarkers demonstrated a statistically significant improvement over the clinical model alone with a receiver-operating characteristics curve of 0.754 (95% confidence interval: 0.65–0.86) compared to 0.617 (95% confidence interval: 0.47–0.76; p-value: 0.012). The clinical model augmented with pre- and post-operative biomarkers demonstrated a significant improvement over the clinical model alone, with a receiver-operating characteristics curve of 0.802 (95% confidence interval: 0.72–0.89; p-value: 0.003).
Conclusions:
Novel biomarkers add significant predictive value when assessing the likelihood of unplanned readmission or mortality after paediatric congenital heart surgery. Further exploration of the utility of these novel biomarkers during the pre- or post-operative period to identify early risk of mortality or readmission will aid in determining the clinical utility and application of these biomarkers into routine risk assessment.
The effect of transportation and lairage on the faecal shedding and post-slaughter contamination of carcasses with Escherichia coli O157 and O26 in young calves (4–7-day-old) was assessed in a cohort study at a regional calf-processing plant in the North Island of New Zealand, following 60 calves as cohorts from six dairy farms to slaughter. Multiple samples from each animal at pre-slaughter (recto-anal mucosal swab) and carcass at post-slaughter (sponge swab) were collected and screened using real-time PCR and culture isolation methods for the presence of E. coli O157 and O26 (Shiga toxin-producing E. coli (STEC) and non-STEC). Genotype analysis of E. coli O157 and O26 isolates provided little evidence of faecal–oral transmission of infection between calves during transportation and lairage. Increased cross-contamination of hides and carcasses with E. coli O157 and O26 between co-transported calves was confirmed at pre-hide removal and post-evisceration stages but not at pre-boning (at the end of dressing prior to chilling), indicating that good hygiene practices and application of an approved intervention effectively controlled carcass contamination. This study was the first of its kind to assess the impact of transportation and lairage on the faecal carriage and post-harvest contamination of carcasses with E. coli O157 and O26 in very young calves.
Several studies have suggested that maternal lifestyle during pregnancy may influence long-term health of offspring by altering the offspring epigenome. Whether maternal leisure-time physical activity (LTPA) during pregnancy might have this effect is unknown. The purpose of this study was to determine the relationship between maternal LTPA during pregnancy and offspring DNA methylation. Participants were recruited from the Archive for Research on Child Health study. At enrollment, participants’ demographic information and self-reported LTPA during pregnancy were determined. High active participants (averaged 637.5 min per week of LTPA; n=14) were matched by age and race to low active participants (averaged 59.5 min per week LTPA; n=28). Blood spots were obtained at birth. Pyrosequencing was used to determine methylation levels of long interspersed nucleotide elements (LINE-1) (global methylation) and peroxisome proliferator-activated receptor-gamma (PPARγ), peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α), insulin-like growth factor 2 (IGF2), pyruvate dehydrogenase kinase, isozyme 4 (PDK4) and transcription factor 7-like 2 (TCF7L2). We found no differences between offspring of high active and low active groups for LINE-1 methylation. The only differences in candidate gene methylation between groups were at two CpG sites in the P2 promoter of IGF2; the offspring of low active group had significantly higher DNA methylation (74.70±2.25% methylation for low active v. 72.83±2.85% methylation for high active; P=0.045). Our results suggest no effect of maternal LTPA on offspring global and candidate gene methylation, with the exception of IGF2. IGF2 has been previously associated with regulation of physical activity, suggesting a possible role of maternal LTPA on regulation of offspring physical activity.
An internationally approved and globally used classification scheme for the diagnosis of CHD has long been sought. The International Paediatric and Congenital Cardiac Code (IPCCC), which was produced and has been maintained by the International Society for Nomenclature of Paediatric and Congenital Heart Disease (the International Nomenclature Society), is used widely, but has spawned many “short list” versions that differ in content depending on the user. Thus, efforts to have a uniform identification of patients with CHD using a single up-to-date and coordinated nomenclature system continue to be thwarted, even if a common nomenclature has been used as a basis for composing various “short lists”. In an attempt to solve this problem, the International Nomenclature Society has linked its efforts with those of the World Health Organization to obtain a globally accepted nomenclature tree for CHD within the 11th iteration of the International Classification of Diseases (ICD-11). The International Nomenclature Society has submitted a hierarchical nomenclature tree for CHD to the World Health Organization that is expected to serve increasingly as the “short list” for all communities interested in coding for congenital cardiology. This article reviews the history of the International Classification of Diseases and of the IPCCC, and outlines the process used in developing the ICD-11 congenital cardiac disease diagnostic list and the definitions for each term on the list. An overview of the content of the congenital heart anomaly section of the Foundation Component of ICD-11, published herein in its entirety, is also included. Future plans for the International Nomenclature Society include linking again with the World Health Organization to tackle procedural nomenclature as it relates to cardiac malformations. By doing so, the Society will continue its role in standardising nomenclature for CHD across the globe, thereby promoting research and better outcomes for fetuses, children, and adults with congenital heart anomalies.
To determine the scope, source, and mode of transmission of a multifacility outbreak of extensively drug-resistant (XDR) Acinetobacter baumannii.
DESIGN
Outbreak investigation.
SETTING AND PARTICIPANTS
Residents and patients in skilled nursing facilities, long-term acute-care hospital, and acute-care hospitals.
METHODS
A case was defined as the incident isolate from clinical or surveillance cultures of XDR Acinetobacter baumannii resistant to imipenem or meropenem and nonsusceptible to all but 1 or 2 antibiotic classes in a patient in an Oregon healthcare facility during January 2012–December 2014. We queried clinical laboratories, reviewed medical records, oversaw patient and environmental surveillance surveys at 2 facilities, and recommended interventions. Pulsed-field gel electrophoresis (PFGE) and molecular analysis were performed.
RESULTS
We identified 21 cases, highly related by PFGE or healthcare facility exposure. Overall, 17 patients (81%) were admitted to either long-term acute-care hospital A (n=8), or skilled nursing facility A (n=8), or both (n=1) prior to XDR A. baumannii isolation. Interfacility communication of patient or resident XDR status was not performed during transfer between facilities. The rare plasmid-encoded carbapenemase gene blaOXA-237 was present in 16 outbreak isolates. Contact precautions, chlorhexidine baths, enhanced environmental cleaning, and interfacility communication were implemented for cases to halt transmission.
CONCLUSIONS
Interfacility transmission of XDR A. baumannii carrying the rare blaOXA-237 was facilitated by transfer of affected patients without communication to receiving facilities.
As endemic measles is eliminated through immunization, countries must determine the risk factors for the importation of measles into highly immunized populations to target control measures. Despite eliminating endemic measles, New Zealand suffers from outbreaks after introductions from abroad, enabling us to use it as a model for measles introduction risk. We used a generalized linear model to analyze risk factors for 1137 measles cases from 2007 to June 2014, provide estimates of national immunity levels, and model measles importation risk. People of European ethnicity made up the majority of measles cases. Age is a positive risk factor, particularly 0–2-year-olds and 5–17-year-old Europeans, along with increased wealth. Pacific islanders were also at greater risk, but due to 0–2-year-old cases. Despite recent high measles, mumps, and rubella vaccine immunization coverage, overall population immunity against measles remains ~90% and is lower in people born between 1982 and 2005. Greatest measles importation risk is during December, and countries predicted to be sources have historical connections and highest travel rates (Australia and UK), followed by Asian countries with high travel rates and higher measles incidences. Our results suggest measles importation due to travel is seeding measles outbreaks, and immunization levels are insufficient to continue to prevent outbreaks because of heterogeneous immunity in the population, leaving particular age groups at risk.
Salmonella is a leading cause of bacterial foodborne illness. We report the collaborative investigative efforts of US and Canadian public health officials during the 2013–2014 international outbreak of multiple Salmonella serotype infections linked to sprouted chia seed powder. The investigation included open-ended interviews of ill persons, traceback, product testing, facility inspections, and trace forward. Ninety-four persons infected with outbreak strains from 16 states and four provinces were identified; 21% were hospitalized and none died. Fifty-four (96%) of 56 persons who consumed chia seed powder, reported 13 different brands that traced back to a single Canadian firm, distributed by four US and eight Canadian companies. Laboratory testing yielded outbreak strains from leftover and intact product. Contaminated product was recalled. Although chia seed powder is a novel outbreak vehicle, sprouted seeds are recognized as an important cause of foodborne illness; firms should follow available guidance to reduce the risk of bacterial contamination during sprouting.
The prevalence and spatial distribution of Escherichia coli serogroups O26, O103, O111 and O145 in calves <7 days old in New Zealand and their relationship with serum IgG, weight and sex was determined by collecting recto-anal mucosal swabs (RAMS) (n = 299) and blood samples (n = 299) from two slaughter plants in the North Island. Real-time PCR of RAMS enrichment cultures revealed that 134/299 samples were positive for O26, 68/299 for O103 and 47/299 for O145, but none were positive for O111. Processing of positive enrichment cultures resulted in 49 O26, four O103 and five O145 isolates. Using multiplex PCR 25/49 (51%) O26 isolates were positive for stx1, eae, ehxA, 17/49 (34·7%) for eae, ehxA and 7/49 (14·2%) for eae only. All O103 and O145 isolates were positive for eae, ehxA only. O26 isolates were grouped into four clusters (>70% similarity) using pulsed field gel electrophoresis. Mapping of the farms showed the presence of farms positive for O26, O103 and O145 in three important dairy producing regions of the North Island. Calves positive for O103 were more likely to be positive for O26 and vice versa (P = 0·04). Similarly, calves positive for O145 were more likely to be positive for O103 and vice versa (P = 0·03). This study demonstrates that non-O157 E. coli serogroups of public health and economic importance containing clinically relevant virulence factors are present in calves in the North Island of New Zealand.
Historically, community engagement (CE) in research has been implemented in the fields of public health, education and agricultural development. In recent years, international discussions on the ethical and practical goals of CE have been extended to human genomic research and biobanking, particularly in the African context. While there is some consensus on the goals and value of CE generally, questions remain about the effectiveness of CE practices and how to evaluate this. Under the auspices of the Human Heredity and Health in Africa Initiative (H3Africa), the H3Africa CE working group organized a workshop in Stellenbosch, South Africa in March 2016 to explore the extent to which communities should be involved in genomic research and biobanking and to examine various methods of evaluating the effectiveness of CE. In this paper, we present the key themes that emerged from the workshop and make a case for the development of a rigorous application, evaluation and learning around approaches for CE that promote a more systematic process of engaging relevant communities. We highlight the key ways in which CE should be embedded into genomic research and biobanking projects.
The Dark Energy Survey is undertaking an observational programme imaging 1/4 of the southern hemisphere sky with unprecedented photometric accuracy. In the process of observing millions of faint stars and galaxies to constrain the parameters of the dark energy equation of state, the Dark Energy Survey will obtain pre-discovery images of the regions surrounding an estimated 100 gamma-ray bursts over 5 yr. Once gamma-ray bursts are detected by, e.g., the Swift satellite, the DES data will be extremely useful for follow-up observations by the transient astronomy community. We describe a recently-commissioned suite of software that listens continuously for automated notices of gamma-ray burst activity, collates information from archival DES data, and disseminates relevant data products back to the community in near-real-time. Of particular importance are the opportunities that non-public DES data provide for relative photometry of the optical counterparts of gamma-ray bursts, as well as for identifying key characteristics (e.g., photometric redshifts) of potential gamma-ray burst host galaxies. We provide the functional details of the DESAlert software, and its data products, and we show sample results from the application of DESAlert to numerous previously detected gamma-ray bursts, including the possible identification of several heretofore unknown gamma-ray burst hosts.
The aim of this study was to examine the population structure, transmission and spatial relationship between genotypes of Shiga toxin-producing Escherichia coli (STEC) and Campylobacter jejuni, on 20 dairy farms in a defined catchment. Pooled faecal samples (n = 72) obtained from 288 calves were analysed by real-time polymerase chain reaction (rtPCR) for E. coli serotypes O26, O103, O111, O145 and O157. The number of samples positive for E. coli O26 (30/72) was high compared to E. coli O103 (7/72), O145 (3/72), O157 (2/72) and O111 (0/72). Eighteen E. coli O26 and 53 C. jejuni isolates were recovered from samples by bacterial culture. E. coli O26 and C. jejuni isolates were genotyped using pulsed-field gel electrophoresis and multilocus sequence typing, respectively. All E. coli O26 isolates could be divided into four clusters and the results indicated that E. coli O26 isolates recovered from calves on the same farm were more similar than isolates recovered from different farms in the catchment. There were 11 different sequence types of C. jejuni isolated from the cattle and 22 from water. An analysis of the population structure of C. jejuni isolated from cattle provided evidence of clustering of genotypes within farms, and among groups of farms separated by road boundaries.
In the United States alone, ∼14,000 children are hospitalised annually with acute heart failure. The science and art of caring for these patients continues to evolve. The International Pediatric Heart Failure Summit of Johns Hopkins All Children’s Heart Institute was held on February 4 and 5, 2015. The 2015 International Pediatric Heart Failure Summit of Johns Hopkins All Children’s Heart Institute was funded through the Andrews/Daicoff Cardiovascular Program Endowment, a philanthropic collaboration between All Children’s Hospital and the Morsani College of Medicine at the University of South Florida (USF). Sponsored by All Children’s Hospital Andrews/Daicoff Cardiovascular Program, the International Pediatric Heart Failure Summit assembled leaders in clinical and scientific disciplines related to paediatric heart failure and created a multi-disciplinary “think-tank”. The purpose of this manuscript is to summarise the lessons from the 2015 International Pediatric Heart Failure Summit of Johns Hopkins All Children’s Heart Institute, to describe the “state of the art” of the treatment of paediatric cardiac failure, and to discuss future directions for research in the domain of paediatric cardiac failure.
The aim of this paper it to derive general coordinate-invariant forms of the Eliassen–Palm flux tensor and thereby characterize the true geometric nature of the eddy–mean-flow interaction in hydrostatic Boussinesq rotating fluids. In the quasi-geostrophic limit previous forms of the Eliassen–Palm flux tensor are shown to be related to each other via a gauge transformation; a general form is stated and its geometric properties are discussed. Similar methodology is applied to the hydrostatic Boussinesq Navier–Stokes equations to re-derive the residual-mean equations in a coordinate-invariant form. Thickness-weighted averaging in buoyancy coordinates is carefully described, via the definition of a volume-form-weighted average, constructed so as to commute with the covariant divergence of a vector. The procedures leading to the thickness-weight averaged equation are discussed, and forms of the Eliassen–Palm flux tensor which arise are identified.
The Gemini Planet Imager (GPI) is a high contrast coronagraph designed to directly image exoplanets and circumstellar disks. GPI includes a polarimetry mode designed to characterize dust grains and enhance the contrast of scattered, polarized light by a factor of 100. Reflections and birefringence of optics within the optical train induce a polarization signature that needs to be measured a priori and calibrated out during data reduction. Here we report on the results of an extensive laboratory characterization campaign of the polarimetry mode. The linear instrumental polarization has been measured in 4 GPI passbands and found to be between 3.5 ± 0.3 % at 1.0 micron and 1.1 ± 0.3 % at 2.0 microns. Modulation efficiency has been measured to be 94% at 1.0 micron increasing to 97% at 2.0 microns. Stability has been shown to better than 0.6% over timescales of ~ 3 months and over cool down cycles. The tests show that GPI passes all polarimetry design requirements and should be able to measure circumstellar disk linear polarization to 1% accuracy.