We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce the Galaxy IFU Spectroscopy Tool (GIST), a convenient, all-in-one and multi-purpose tool for the analysis and visualisation of already reduced (integral-field) spectroscopic data. In particular, the pipeline performs all steps from read-in and preparation of data to its scientific analysis and visualisation in publication-quality plots. The code measures stellar kinematics and non-parametric star formation histories using the pPXF routine (Cappellari & Emsellem 2004; Cappellari 2017), performs an emission-line analysis with the GandALF procedure (Sarzi et al. 2006; Falcón-Barroso et al. 2006), and determines absorption line-strength indices and their corresponding single stellar population equivalent population properties (Kuntschner et al.2006; Martín-Navarro et al. 2018). The dedicated visualisation routine Mapviewer facilitates the access of all data products in a sophisticated graphical user interface with fully interactive plots.
Understanding the peculiar properties of Ultra Diffuse Galaxies (UDGs) via spectroscopic analysis is a challenging task that is now becoming feasible. The advent of 10m-class telescopes and high sensitivity instruments is enabling the gathering of high quality spectra even for the faintest systems. In addition, advances in the modelling of stellar populations, stellar libraries, and full-spectral fitting codes are allowing the recovery of the stellar content shaping those spectra with unprecedented reliability. In this contribution we report on the extensive tests we have carried out using the inversion code STECKMAP. The similarities between the Star Formation Histories (SFH) recovered from STECKMAP (applied to high-quality spectra) and deep Colour-Magnitude diagrams fitting (resolved stars) in two Local Group dwarf galaxies (LMC and LeoA) are remarkable, demonstrating the impressive performance of STECKMAP. We exploit the capabilities of STECKMAP and perform one of the most complete and reliable characterisations of the stellar component of UDGs to date using deep spectroscopic data. We measure radial and rotation velocities, SFHs and mean population parameters, such as ages and metallicities, for a sample of five UDG candidates in the Coma cluster. From the radial velocities, we confirm the Coma membership of these galaxies. We find that their rotation properties, if detected at all, are compatible with dwarf-like galaxies. The SFHs of the UDG are dominated by old (∼ 7 Gyr), metal-poor ([M/H] ∼ -1.1) and alpha-enhanced ([Mg/Fe]∼ 0.4) populations followed by a smooth or episodic decline which halted ∼ 2 Gyr ago, possibly a sign of cluster-induced quenching. We find no obvious correlation between individual SFH shapes and any UDG morphological properties. The recovered stellar properties for UDGs are similar to those found for DDO 44, a local UDG analogue resolved into stars. We conclude that the UDGs in our sample are extended dwarfs whose properties are likely the outcome of both internal processes, such as bursty SFHs and/or high-spin haloes, as well as environmental effects within the Coma cluster.
In this paper, we present a model characterizing the interaction of a radiative shock (RS) with a solid material, as described in a recent paper (Koenig et al., Phys. Plasmas, 24, 082707 (2017)), the new model is then related to recent experiments performed on the GEKKO XII laser facility. The RS generated in a xenon gas cell propagates towards a solid obstacle that is ablated by radiation coming from the shock front and the radiative precursor, mimicking processes occurring in astrophysical phenomena. The model presented here calculates the dynamics of the obstacle expansion, which depends on several parameters, notably the geometry and the temperature of the shock. All parameters required for the model have been obtained from experiments. Good agreement between experimental data and the model is found when spherical geometry is taken into account. As a consequence, this model is a useful and easy tool to infer parameters from experimental data (such as the shock temperature), and also to design future experiments.
A new target design is presented to model high-energy radiative accretion shocks in polars. In this paper, we present the experimental results obtained on the GEKKO XII laser facility for the POLAR project. The experimental results are compared with 2D FCI2 simulations to characterize the dynamics and the structure of plasma flow before and after the collision. The good agreement between simulations and experimental data confirms the formation of a reverse shock where cooling losses start modifying the post-shock region. With the multi-material structure of the target, a hydrodynamic collimation is exhibited and a radiative structure coupled with the reverse shock is highlighted in both experimental data and simulations. The flexibility of the laser energy produced on GEKKO XII allowed us to produce high-velocity flows and study new and interesting radiation hydrodynamic regimes between those obtained on the LULI2000 and Orion laser facilities.
Epstein Barr virus (EBV) infects 95% of the global population and is associated with up to 2% of cancers globally. Immunoglobulin G (IgG) antibody levels to EBV have been shown to be heritable and associated with developing malignancies. We, therefore, performed a pilot genome-wide association analysis of anti-EBV IgG traits in an African population, using a combined approach including array genotyping, whole-genome sequencing and imputation to a panel with African sequence data. In 1562 Ugandans, we identify a variant in human leukocyte antigen (HLA)-DQA1, rs9272371 (p = 2.6 × 10−17) associated with anti-EBV nuclear antigen-1 responses. Trans-ancestry meta-analysis and fine-mapping with European-ancestry individuals suggest the presence of distinct HLA class II variants driving associations in Uganda. In addition, we identify four putative, novel, very rare African-specific loci with preliminary evidence for association with anti-viral capsid antigen IgG responses which will require replication for validation. These findings reinforce the need for the expansion of such studies in African populations with relevant datasets to capture genetic diversity.
In regions where Chagas disease is endemic, canine Trypanosoma cruzi infection is highly correlated with the risk of transmission of the parasite to humans. Herein we evaluated the novel TcTASV protein family (subfamilies A, B, C), differentially expressed in bloodstream trypomastigotes, for the detection of naturally infected dogs. A gene of each TcTASV subfamily was cloned and expressed. Indirect enzyme-linked immunosorbent assays (ELISA) were developed using recombinant antigens individually or mixed together. Our results showed that dogs with active T. cruzi infection differentially reacted against the TcTASV-C subfamily. The use of both TcTASV-C plus TcTASV-A proteins (Mix A+C-ELISA) enhanced the reactivity of sera from dogs with active infection, detecting 94% of the evaluated samples. These findings agree with our previous observations, where the infected animals exhibited a quick anti-TcTASV-C antibody response, coincident with the beginning of parasitaemia, in a murine model of the disease. Results obtained in the present work prove that the Mix A+C-ELISA is a specific, simple and cheap technique to be applied in endemic areas in screening studies. The Mix A+C-ELISA could help to differentially detect canine hosts with active infection and therefore with high impact in the risk of transmission to humans.
Glyphosate is now the most widely used herbicide; after years of frequent utilization, resistant weeds were selected, mainly due to widespread adoption of glyphosate-resistant crops and no-tillage sowing system. Increasing difficulty in controlling Chloris polydactyla with glyphosate has been noticed in agricultural areas. Here, the susceptibility level of various C. polydactyla accessions from Brazil is examined. Two whole-plant studies were conducted to confirm the presence and extent of glyphosate susceptibility among accessions, which involved the application of seven glyphosate doses on four accessions. The four accessions showed different glyphosate susceptibilities. The “Matão” accession presented major tolerance for glyphosate compared to “Palotina” accessions. “Jaboticabal” plants showed an intermediary susceptibility. The resistance factor (RF) was 3.76 between the “Matão” and “Palotina” accessions. All biotypes died at 2,880 g ae ha−1 glyphosate.
We study the stellar content of three galactic bulges with the high resolution gratings (R=7000) of the WiFeS integral field unit in order to better understand their formation and evolution. In all cases we find that at least 50% of the stellar mass already existed 12 Gyrs ago, more than currently predicted by simulations. A younger component (age between ∼1 to ∼8 Gyrs) is also prominent and its present day distribution seems to be much more affected by morphological structures, especially bars, than the older one. This in-depth analysis supports the notion of increasing complexity in bulges which cannot be achieved by mergers alone, but requires a non-negligible contribution from secular evolution.
The aim of this study was to monitor the spatio-temporal spread of influenza incidence in Spain during the 2009 pandemic and the following two influenza seasons 2010–2011 and 2011–2012 using a Bayesian Poisson mixed regression model; and implement this model of geographical analysis in the Spanish Influenza Surveillance System to obtain maps of influenza incidence for every week. In the pandemic wave the maps showed influenza activity spreading from west to east. The 2010–2011 influenza epidemic wave plotted a north-west/south-east pattern of spread. During the 2011–2012 season the spread of influenza was geographically heterogeneous. The most important source of variability in the model is the temporal term. The model of spatio-temporal spread of influenza incidence is a supplementary tool of influenza surveillance in Spain.
In around ≈25% of early-type galaxies (ETGs) UV emission from young stellar populations is present. Molecular gas reservoirs have been detected in these systems (e.g. Young et al. (2011), providing the fuel for this residual star-formation. The environment in which this molecular gas is found is quite different than that in spiral galaxies however, with harsher radiation fields, deeper potentials and high metallicity and alpha-element abundances. Here we report on one element of our multi-faceted programme to understand the similarities and differences between the gas reservoirs in spirals and ETGs. We use spatially resolved observations from the CARMA mm-wave interferometer to investigate the size of the molecular reservoirs in the the CO-rich ATLAS3D ETGs (survey described in Alatalo et al. 2012, submitted). We find that the molecular gas extent is smaller in absolute terms in ETGs than in late-type galaxies, but that the size distributions are similar once scaled by the galaxies optical/stellar characteristic scale-lengths (Fig 1, left). Amongst ETGs, we find that the extent of the molecular gas is independent of the kinematic misalignment, despite the many reasons why misaligned gas might have a smaller extent. The extent of the molecular gas does depend on environment, with Virgo cluster ETGs having less extended molecular gas reservoirs (Fig 1, right). Whatever the cause, this further emphases that cluster ETGs follow different evolutionary pathways from those in the field. Full details of this work will be presented in Davis et al. (2012), submitted.
Recently, massive early-type galaxies have shed their red-and-dead moniker, thanks to the discovery that many host residual star formation. As part of the ATLAS-3D project, we have conducted a complete, volume-limited survey of the molecular gas in 260 local early-type galaxies with the IRAM-30m telescope and the CARMA interferometer, in an attempt to understand the fuel powering this star formation. We find that around 22% of early-type galaxies in the local volume host molecular gas reservoirs. This detection rate is independent of galaxy luminosity and environment. Here we focus on how kinematic misalignment measurements and gas-to-dust ratios can be used to put constraints on the origin of the cold ISM in these systems. The origin of the cold ISM seems to depend strongly on environment, with misaligned, dust poor gas (indicative of externally acquired material) being common in the field but completely absent in rich groups and in the Virgo cluster. Very massive galaxies also appear to be devoid of accreted gas. This suggests that in the field mergers and/or cold gas accretion dominate the gas supply, while in clusters internal secular processes become more important. This implies that environment has a strong impact on the cold gas properties of ETGs.
Strongly radiative shocks are characterized by an ionization front induced by the shock
wave. The role played together by opacity and geometry is critical for the physics of
these shock waves. Moreover, radiation is an obvious way of probing these shock waves,
either by self-emission or by probe absorption. These aspects will be illustrated by
recent experimental results obtained at the iodine PALS (Prague Asterix Laser System)
facility.
Early-type galaxies (ETGs) satisfy a now classic scaling relation Re ∝ σ1.2eI−0.8e, the Fundamental Plane (FP; Djorgovski & Davis 1987; Dressler et al. 1987), between their size, stellar velocity dispersion and mean surface brightness. A significant effort has been devoted in the past twenty years to try to understand why the coefficients of the relation are not the ones predicted by the virial theorem Re ∝ σ2eI−1e.
We present SEDs for single-age, single-metallicity stellar populations (SSPs) covering the full optical spectral range at resolution (FWHM = 2.3Å). These SEDs can be regarded as our base models, as we combine scaled-solar isochrones with an empirical stellar spectral library (MILES), which follows the chemical evolution pattern of the solar neighbourhood. The models rely as much as possible on empirical ingredients as also employ extensive photometric libraries. Thanks to the unprecedented parameter coverage of the MILES library we synthesize SSP SEDs from intermediate- to very-old age regimes, and the metallicity from super-solar to [M/H] = −2.3, all for a suite of IMF shapes and slopes. We propose a new Line Index System (LIS), based on flux-calibrated spectra, to avoid the intrinsic uncertainties associated with the Lick/IDS system and provide more appropriate, uniform, spectral resolution.
We discuss some recent integral field spectroscopy using the SAURON instrument of a sample consisting of 24 early-type spirals, part of the SAURON Survey, and 18 late-type spirals. Using 2-dimensional maps of their stellar radial velocity, velocity dispersion, and absorption line strength, it is now much easier to understand the nature of nearby galactic bulges. We discuss a few highlights of this work, and point out some new ideas about the formation of galactic bulges.
Supermassive black holes are a key element in our understanding of how galaxies form. Most of the progress in this very active field of research is based on just ~30 determination of black hole masses, accumulated over the past decade. We illustrate how integral-field spectroscopy, and in particular our OASIS modeling effort can help improve the current situation.
Using the unique dataset obtained within the course of the SAURON project, a radically new view of the structure, dynamics and stellar populations of early-type galaxies has emerged. We show that galaxies come in two broad flavours (slow and fast rotators), depending on whether or not they exhibit clear large-scale rotation, as indicated via a robust measure of the specific angular momentum of baryons. This property is also linked with other physical characteristics of early-type galaxies, such as: the presence of dynamically decoupled cores, orbital structure and anisotropy, stellar populations and dark matter content. I here report on the observed link between this baryonic angular momentum and a mass sequence, and how this uniquely relates to the building of the red sequence via dissipative/dissipationless mergers and secular evolution.
We present a new spectral library for old and intermediate-aged single-age, single-metallicity stellar populations for a wide metallicity range. The major ingredient of these models is a new empirical stellar library composed of 985 stars, whose main characteristic is its unprecedented stellar atmospheric parameters coverage. The model SEDs cover the spectral range 3540-7410A at 2.3A (FWHM). We present some advantages and applications of these models.
We discuss SAURON absorption line strength maps of a sample of 24 early-type spirals, mostly Sa. From the Lick indices Hβ, Mgb and Fe 5015 we derive SSP-ages and metallicities. By comparing the scaling relations of Mg b and Hβ and central velocity dispersion with the same relation for the edge-on sample of Falcón-Barroso et al. (2002) we derive a picture in which the central regions of Sa galaxies contain at least 2 components: one (or more) thin, disc-like component, often containing recent star formation, and another, elliptical-like component, consisting of old stars and rotating more slowly, dominating the light above the plane. If one defines a bulge to be the component responsible for the light in excess of the outer exponential disc, then many Sa-bulges are dominated by a thin, disc-like component containing recent star formation.