We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Late-life depression (LLD) is associated with poor social functioning. However, previous research uses bias-prone self-report scales to measure social functioning and a more objective measure is lacking. We tested a novel wearable device to measure speech that participants encounter as an indicator of social interaction.
Methods
Twenty nine participants with LLD and 29 age-matched controls wore a wrist-worn device continuously for seven days, which recorded their acoustic environment. Acoustic data were automatically analysed using deep learning models that had been developed and validated on an independent speech dataset. Total speech activity and the proportion of speech produced by the device wearer were both detected whilst maintaining participants' privacy. Participants underwent a neuropsychological test battery and clinical and self-report scales to measure severity of depression, general and social functioning.
Results
Compared to controls, participants with LLD showed poorer self-reported social and general functioning. Total speech activity was much lower for participants with LLD than controls, with no overlap between groups. The proportion of speech produced by the participants was smaller for LLD than controls. In LLD, both speech measures correlated with attention and psychomotor speed performance but not with depression severity or self-reported social functioning.
Conclusions
Using this device, LLD was associated with lower levels of speech than controls and speech activity was related to psychomotor retardation. We have demonstrated that speech activity measured by wearable technology differentiated LLD from controls with high precision and, in this study, provided an objective measure of an aspect of real-world social functioning in LLD.
We report on a two-arm hybrid high-power laser system (HPLS) able to deliver 2 × 10 PW femtosecond pulses, developed at the Bucharest-Magurele Extreme Light Infrastructure Nuclear Physics (ELI-NP) Facility. A hybrid front-end (FE) based on a Ti:sapphire chirped pulse amplifier and a picosecond optical parametric chirped pulse amplifier based on beta barium borate (BBO) crystals, with a cross-polarized wave (XPW) filter in between, has been developed. It delivers 10 mJ laser pulses, at 10 Hz repetition rate, with more than 70 nm spectral bandwidth and high-intensity contrast, in the range of 1013:1. The high-energy Ti:sapphire amplifier stages of both arms were seeded from this common FE. The final high-energy amplifier, equipped with a 200 mm diameter Ti:sapphire crystal, has been pumped by six 100 J nanosecond frequency doubled Nd:glass lasers, at 1 pulse/min repetition rate. More than 300 J output pulse energy has been obtained by pumping with only 80% of the whole 600 J available pump energy. The compressor has a transmission efficiency of 74% and an output pulse duration of 22.7 fs was measured, thus demonstrating that the dual-arm HPLS has the capacity to generate 10 PW peak power femtosecond pulses. The reported results represent the cornerstone of the ELI-NP 2 × 10 PW femtosecond laser facility, devoted to fundamental and applied nuclear physics research.
The field of in situ nanomechanics is greatly benefiting from microelectromechanical systems (MEMS) technology and integrated microscale testing machines that can measure a wide range of mechanical properties at nanometer scales, while characterizing the damage or microstructure evolution in electron microscopes. This article focuses on the latest advances in MEMS-based nanomechanical testing techniques that go beyond stress and strain measurements under typical monotonic loadings. Specifically, recent advances in MEMS testing machines now enable probing key mechanical properties of nanomaterials related to fracture, fatigue, and wear. Tensile properties can be measured without instabilities or at high strain rates, and signature parameters such as activation volume can be obtained. Opportunities for environmental in situ nanomechanics enabled by MEMS technology are also discussed.
Hemorrhage is the leading cause of preventable death in combat, although early recognition of hemorrhage is still challenging on the battlefield.
Hypothesis/Problem:
The objective of this study was to describe the shock index (SI) in a healthy military population, and to measure its variation during a controlled blood loss, simulated by blood donation.
Methods:
A prospective observational study that enrolled military subjects, volunteers for blood donation, was conducted. Demographic and clinical information, concerning both the patient and the blood collection, were recorded. Baseline vital signs were measured, before and after donation, in a 45° supine position. Statistical analysis was performed after calculation of SI.
Results:
A total of 483 participants were included in the study. The mean blood donation volume was 473mL (SD = 44mL). The median pre- and post-blood donation SI were significantly different: 0.54 (IQR = 0.48-0.63) and 0.57 (IQR = 0.49-0.66), respectively (P = .002). Changes in pre-/post-donation blood pressure (BP) and heart rate (HR) also reached statistical difference but represented a clinically poor relevance. The multivariate analysis showed no significant associations between SI variations and age, sex, body mass index (BMI), sport activities, blood donation volume, and enteral volume replacement (EVR).
Conclusion:
In this model of mild hemorrhage, SI exhibited significant variations but failed to reach clinical relevance. Further studies are needed to prove the benefit of SI calculation as a possible parameter for early recognition of hemorrhage in combat casualties at the point of injury.
Pasquier P, Duron S, Pouget T, Carbonnel AC, Boutonnet M, Malgras B, Barbier O, de Saint Maurice G, Sailliol A, Ausset S, Martinaud C. Use of shock index to identify mild hemorrhage: an observational study in military blood donors. Prehosp Disaster Med. 2019;34(3):303–307.
The pore structure of vapour deposited ASW is poorly understood, despite its importance to fundamental processes such as grain chemistry, cooling of star forming regions, and planet formation. We studied structural changes of vapour deposited D2O on intra-molecular to 30 nm length scales at temperatures ranging from 18 to 180 K and observed enhanced mobility from 100 to 150 K. An Arrhenius type model describes the loss of surface area and porosity with a common set of kinetic parameters. The low activation energy (428 K) is commensurate with van der Waals forces between nm-scale substructures in the ice. Our findings imply that water porosity will always change with time, even at low temperatures.
Despite the lack of another Flagship-class mission such as Cassini–Huygens, prospects for the future exploration of Saturn are nevertheless encouraging. Both NASA and the European Space Agency (ESA) are exploring the possibilities of focused interplanetary missions (1) to drop one or more in situ atmospheric entry probes into Saturn and (2) to explore the satellites Titan and Enceladus, which would provide opportunities for both in situ investigations of Saturn’s magnetosphere and detailed remote-sensing observations of Saturn’s atmosphere. Additionally, a new generation of powerful Earth-based and near-Earth telescopes with advanced instrumentation spanning the ultraviolet to the far-infrared promise to provide systematic observations of Saturn’s seasonally changing composition and thermal structure, cloud structures and wind fields. Finally, new advances in amateur telescopic observations brought on largely by the availability of low-cost, powerful computers, low-noise, large-format cameras, and attendant sophisticated software promise to provide regular, longterm observations of Saturn in remarkable detail.
We develop an algebraic notion of recognizability for languages of words indexed by countable linear orderings. We prove that this notion is effectively equivalent to definability in monadic second-order (MSO) logic. We also provide three logical applications. First, we establish the first known collapse result for the quantifier alternation of MSO logic over countable linear orderings. Second, we solve an open problem posed by Gurevich and Rabinovich, concerning the MSO-definability of sets of rational numbers using the reals in the background. Third, we establish the MSO-definability of the set of yields induced by an MSO-definable set of trees, confirming a conjecture posed by Bruyère, Carton, and Sénizergues.
We aimed to ascertain the factors associated with lack of isolation precautions (IP) in patients infected or colonized by third-generation cephalosporin-resistant Enterobacteriaceae (3GCR-E) and methicillin-resistant Staphylococcus aureus (MRSA) in hospital settings.
DESIGN
Prospective surveillance and audit of practices.
SETTING
The study included 4 university hospitals in Lyon, France.
PARTICIPANTS
All patients hospitalized between April and June in 2013 and 2015 were included. Case patients had ≥1 clinical sample positive for MRSA and/or 3GCR-E.
METHODS
Factors associated with the lack of IP implementation were identified using multivariate logistic regression. The incidence of MDRO infections was expressed per 10,000 patient days.
RESULTS
Overall, 57,222 patients accounting for 192,234 patient days of hospitalization were included, and 635 (1.1%) MDRO cases were identified. MRSA incidence was 2.5 per 10,000 patient days (95% confidence interval [95% CI], 2.1–3.0) and 3GCR-E incidence was 10.1 per 10,000 patient days (95% CI, 9.2–11.0), with no crude difference between 2013 and 2015 (P=.15 and P=.11, respectively). Among 3GCR-E, the main species were Escherichia coli (43.8%) and Klebsiella pneumoniae (31.0%). Isolation precautions were implemented in 78.5% of cases. Lack of IP implementation was independently associated with patient age, year, specialty, hospital, colonization compared with infection, and lack of medical prescription for IPs (adjusted odds ratio, 17.4; 95% CI, 8.5–35.8; P<.001).
CONCLUSIONS
MRSA and 3GCR-E infections and/or colonizations are frequent in healthcare settings, and IPs are implemented in most cases. When IPs are lacking, the main factor is the absence of medical prescription for IPs, underscoring the need for alerts to physicians by the microbiological laboratory and/or the infection control team.
Our recent discovery and excavation of a series of iron smelting furnaces, dated to the eighth and ninth century CE, near upland Rmet villages in northwest Laos, potentially sheds new light on the role of regional upland groups during the immediate pre-Tai period. The oral tradition associated with these furnaces emphasises the role of an ancient population of metallurgists who left the area under pressure from the Rmet. These stories could refer to the actual arrival and departure (immigration and emigration) of a population of metallurgists in that area sometime during the second half of the first millennium CE or they can support the scenario of a dissimilation process. The latter would explain the existence of a Rmet subculture that the locals regard as ‘Chueang Lavae’ villages, a differentiation that Karl G. Izikowitz had labelled ‘Upper Lamet’ in the 1930s. Our finds show that archaeology and ethnology can both contribute to a much-needed reformulation of upland Lao history.
Whereas broad-scale Amazonian forest types have been shown to influence the structure of the communities of medium- to large-bodied vertebrates, their natural heterogeneity at smaller scale or within the terra firme forests remains poorly described and understood. Diversity indices of such communities and the relative abundance of the 21 most commonly observed species were compared from standardized line-transect data across 25 study sites distributed in undisturbed forests in French Guiana. We first assessed the relevance of a forest typology based on geomorphological landscapes to explain the observed heterogeneity. As previously found for tree beta-diversity patterns, this new typology proved to be a non-negligible factor underlying the beta diversity of the communities of medium- to large bodied vertebrates in French Guianan terra firme forests. Although the species studied are almost ubiquitous across the region, they exhibited habitat preferences through significant variation in abundance and in their association index with the different landscape types. As terra firme forests represent more than 90% of the Amazon basin, characterizing their heterogeneity – including faunal communities – is a major challenge in neotropical forest ecology.
In this work, we study the acceleration of hot plasma to relativistic speed through the Compton rocket effect which is viable in the two-flow paradigm.
This paper adds to the growing empirical evidence on the importance of habits in governing human behavior, and sheds new light on individual inertia in relation to transportation behavior. An enriched perspective rooted in Veblenian evolutionary economics (VEE) is used to construct a theoretical framework in order to analyze the processes at play in the formation and reinforcement of habits. The empirical study explores more specifically the synchronic processes strengthening the car-using habit. In addition to underlining the shortcomings of a ‘decision theory’ perspective to address urban transportation behaviors, we find that synchronic habits can have a significant effect on behavioral inertia. Our results suggest the existence of positive feedback between the development of synchronic habits, qualitative perceptions of driving times, and reinforcement of the car-using habit. The paper points out also that the diachronic dimension of habits would constitute another promising domain for further research on behavioral inertia in transportation.
A scanning force microscope for in situ nanofocused X-ray studies (SFINX) has been developed which can be installed on diffractometers at synchrotron beamlines allowing for the combination with various techniques such as coherent X-ray diffraction and fluorescence. The capabilities of this device are demonstrated on Cu nanowires and on Au islands grown on sapphire (0001). The sample topography, crystallinity, and elemental distribution of the same area are investigated by recording simultaneously an AFM image, a scanning X-ray diffraction map, and a fluorescence map. Additionally, the mechanical response of Au islands is studied by in situ indentation tests employing the AFM-tip and recording 2D X-ray diffraction patterns during mechanical loading.
In the new DR-A in-situ diffusion experiment at Mont Terri, a perturbation (replacement of the initial synthetic porewater in the borehole with a high-salinity solution) has been induced to study the effects on solute transport and retention, and more importantly, to test the predictive capability of reactive transport codes. Reactive transport modeling is being performed by different teams (IDAEA-CSIC, PSI, Univ. Bern, Univ. British Columbia, Lawrence Berkeley Natl. Lab.). Initial modeling results using the CrunchFlow code and focusing on Cs+ behavior are reported here.
Two new microsporidia, Anostracospora rigaudi n. g., n. sp., and Enterocytospora artemiae n. g., n. sp. infecting the intestinal epithelium of Artemia parthenogenetica Bowen and Sterling, 1978 and Artemia franciscana Kellogg, 1906 in southern France are described. Molecular analyses revealed the two species belong to a clade of microsporidian parasites that preferentially infect the intestinal epithelium of insect and crustacean hosts. These parasites are morphologically distinguishable from other gut microsporidia infecting Artemia. All life cycle stages have isolated nuclei. Fixed spores measure 1·3×0·7 μm with 5–6 polar tube coils for A. rigaudi and 1·2×0·9 μm with 4 polar tube coils for E. artemiae. Transmission of both species is horizontal, most likely through the ingestion of spores released with the faeces of infected hosts. The minute size of these species, together with their intestinal localization, makes their detection and identification difficult. We developed two species-specific molecular markers allowing each type of infection to be detected within 3–6 days post-inoculation. Using these markers, we show that the prevalence of these microsporidia ranges from 20% to 75% in natural populations. Hence, this study illustrates the usefulness of molecular approaches to study prevalent, but cryptic, infections involving microsporidian parasites of gut tissues.