We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Ensembles of indium phosphide nanowires were grown on amorphous quartz substrates and their optical properties were examined at various cryogenic temperatures. Complex dynamics result from the large areal densities, random orientation, combination of both zincblende and wurtzite phases, and the geometries of the nanowires. Those complex dynamics are discussed in relation to their effect on the temperature dependence of photoluminescence and Raman spectroscopy. Five peaks are found to exist in the photoluminescence spectra at low temperatures which are attributed to radiative recombinations associated with quantum confined zinc blende, quantum confined excitons in zinc blende, quantum confined wurtzite, excitons in bulk zinc blende and impurity states. An energy transfer mechanism between two types of radiative recombinations among the five is proposed to explain intensity variations and the temperature dependence of the PL peaks is discussed. The Raman spectra is observed to have peaks created by a combination of zinc blende and wurtzite vibrational modes which is explained by folding the phonon dispersion.
Email your librarian or administrator to recommend adding this to your organisation's collection.