We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study various families of Artin $L$-functions attached to geometric parametrizations of number fields. In each case we find the Sato–Tate measure of the family and determine the symmetry type of the distribution of the low-lying zeros.
This paper proves two results on the field of rationality $\mathbb{Q}({\it\pi})$ for an automorphic representation ${\it\pi}$, which is the subfield of $\mathbb{C}$ fixed under the subgroup of $\text{Aut}(\mathbb{C})$ stabilizing the isomorphism class of the finite part of ${\it\pi}$. For general linear groups and classical groups, our first main result is the finiteness of the set of discrete automorphic representations ${\it\pi}$ such that ${\it\pi}$ is unramified away from a fixed finite set of places, ${\it\pi}_{\infty }$ has a fixed infinitesimal character, and $[\mathbb{Q}({\it\pi}):\mathbb{Q}]$ is bounded. The second main result is that for classical groups, $[\mathbb{Q}({\it\pi}):\mathbb{Q}]$ grows to infinity in a family of automorphic representations in level aspect whose infinite components are discrete series in a fixed $L$-packet under mild conditions.
Let E/ℚ be an elliptic curve and let D<0 be a sufficiently large fundamental discriminant. If contains Heegner points of discriminant D, those points generate a subgroup of rank at least |D|δ, where δ>0 is an absolute constant. This result is compatible with the Birch and Swinnerton-Dyer conjecture.
Feasibility of 4H-SiC epitaxy on SiCOI substrates has been demonstrated, with high quality of obtained layers. Power Schottky diodes were designed and fabricated on these new structures, and exhibited very interesting electrical performance, particularly in reverse mode, with Vbr ∼ 1000 V. This technology is very promising for the realization of monolithic SiC power systems.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.