The intercalation of europium ions (Eu3+) into the interlayer space of a layered silicate, magadiite, was conducted by ion-exchange reactions between magadiite and europium(III) chloride. X-ray diffraction and elemental analysis results indicated that Eu3+ cations were intercalated into the interlayer space of magadiite. The ion exchange between Eu3+ and Na+ occurred preferentially so that the adsorbed Eu3+ amounts were controlled quantitatively. Thermal transformation of the original layered structure was suppressed by the intercalation of Eu3+. The resulting intercalation compounds exhibited photoluminescence arising from the intercalated Eu3+. The luminescence intensity varied in accordance with the amount of Eu3+ absorbed, suggesting that the self-quenching occurred at higher loading levels. The luminescence intensity was also changed by the heat treatment, corresponding to the change in the surroundings of the Eu3+ adsorbed, induced by the removal of the adsorbed water molecules and the hydroxyl groups of the silicate.