Recently, thermally stable, low resistance In-based ohmic contacts to n-type GaAs have been developed in our laboratories by depositing a small amount of In with refractory metals in a conventional evaporator, followed by rapid thermal annealing. By correlating the interfacial microstructure to the electrical properties, InxGa1-xAs phases grown epitaxially on the GaAs were found to be essential for reduction of the contact resistance (R
c
). This low resistance was believed to be due to separation of the high barrier (φ
b
) at the metal/GaAs contact into two low barriers at the metal/InxGa1-xAs and InxGa1-xAs/GaAs interfaces. In this paper the effects of the In concentration (x) in the InxGa1-xAs phases and addition of dopants to the contact metal are presented. High In concentration is desirable to reduce the φ
b
at the metal/InxGa1-xAs interface. Such contacts were prepared by sputter-depositing InAs with other contact elements, but the low R
c
values were not obtained. The reason was explained to be due to an increase in the φ
b
at the InxGa1-xAs/GaAs interface due to the formation of misfit dislocations. However, addition of a small amount of Si to the contact metals reduced significantly the R
c
value. This contact demonstrated excellent thermal stability: no deterioration was observed at 400°C for more than 100 hrs. In addition, the use of this Ni(Si)InW contact metal allowed us to fabricate the low resistance ohmic contacts by one-step (simultaneous) annealing for “implant-activation” and “ohmic contact formation”, which simplifies significantly GaAs device fabrication process steps. For p-type ohmic contacts, low resistance contacts were fabricated by depositing the same NilnW contact material to p-type GaAs. This contact was also thermally stable during subsequent annealing at 400°C. Within our knowledge this is believed to be the first demonstration of low resistance, thermally stable ohmic contact fabrication using the same materials for both n and p-type GaAs.