We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
from
I
-
Comparative and functional fungal genomics
By
R. A. Dean, Center for Integrated Fungal Research Department of Plant Pathology 1200 Partners Building II Box 7251 North Carolina State University Raleigh NC 27695 USA,
T. Mitchell, North Carolina State University Department of Plant Pathology Campus Box 7251 Raleigh NC 27695–7251 USA,
R. Kulkarni, RTI 3040 Cornwallis Road Research Triangle Park NC 27709 USA,
N. Donofrio, North Carolina State University Department of Plant Pathology Campus Box 7251 Raleigh NC 27695–7251 USA,
A. Powell, North Carolina State University Department of Plant Pathology Campus Box 7251 Raleigh NC 27695–7251 USA,
Y. Y. Oh, North Carolina State University Department of Plant Pathology Campus Box 7251 Raleigh NC 27695–7251 USA,
S. Diener, North Carolina State University Department of Plant Pathology Campus Box 7253 Raleigh NC 27695–7253 USA,
H. Pan, RTI 3040 Cornwallis Road Research Triangle Park NC 27709 USA,
D. Brown, North Carolina State University Department of Plant Pathology Campus Box 7251 Raleigh NC 27695–7251 USA,
J. Deng, North Carolina State University Department of Plant Pathology Campus Box 7251 Raleigh NC 27695–7251 USA,
I. Carbone, North Carolina State University Department of Plant Pathology Campus Box 7244 Raleigh NC 27695–7244 USA,
D. J. Ebbole, Department of Plant Pathology and Microbiology Peterson Building Rm 120 MS# 2132 Texas A&M University College Station TX 77843–2132 USA,
M. Thon, Department of Computer Science 320C Peterson Building MS# 2132 Texas A&M University College Station TX 77843–2132 USA,
M. L. Farman, Department of Plant Pathology University of Kentucky 1405 Veterans Drive Lexington KY 40546–0312 USA,
M. J. Orbach, Department of Plant Pathology University of Arizona Forbes Room 105 PO Box 210036 Tucson AZ 85721–0036 USA,
C. Soderlund, Director of Bioinformatics Department of Plant Science 303 Forbes Building Tucson AZ 85721 USA,
J-R. Xu, Department of Botany and Plant Pathology 915 West State Street Purdue University West Lafayette IN 47906 USA,
Y-H. Lee, Seoul National University School of Agricultural Biotechnology Suwon 441–744 Korea,
N. J. Talbot, Department of Biological Sciences University of Exeter Hatherly Laboratories Prince of Wales Road Exeter EX4 4PS UK,
S. Coughlan, Agilent Technologies Inc. Little Falls Site 2850 Centerville Road Wilmington DE 19808 USA,
J. E. Galagan, The Broad Institute Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139–4307 USA,
B. W. Birren, The Broad Institute Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139–4307 USA
Rice blast disease, caused by the filamentous fungus Magnaporthe grisea, is a serious and recurrent problem in all rice-growing regions of the world (Talbot, 2003; Valent & Chumley, 1991). It is estimated that each year enough rice is destroyed by rice blast disease to feed 60 million people. Control of this disease is difficult; new host-specific forms develop quickly to overcome host resistance and chemical control is typically not cost effective (Ou, 1987). Infections occur when fungal spores land and attach themselves to leaves using a special adhesive released from the tip of each spore (Hamer et al., 1988). The germinating spore develops an appressorium, a specialized infection cell, which generates enormous turgor pressure – up to 8 MPa – that ruptures the leaf cuticle allowing invasion of the underlying leaf tissue (de Jong et al., 1997; Dean, 1997). Subsequent colonization of the leaf produces disease lesions from which the fungus sporulates and spreads to new plants. When rice blast infects young rice seedlings, whole plants often die, while spread of the disease to the stems, nodes or panicle of older plants results in nearly total loss of the rice grain. Recent reports have further shown that the fungus has the capacity to infect plant roots (Sesma & Osbourn, 2004). Different host-limited forms of Magnaporthe also infect a broad range of grass species including wheat, barley and millet.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.