The occurrence and severity of obesity- and insulin resistance-related disorders vary according to the diet. The aim of the present longitudinal study was to examine the effects of a high-fat or a high-fructose diet on body weight (BW), body fat mass, insulin sensitivity (IS) and lipid profiles in a rat model of dietary-induced obesity and low IS. A total of eighteen, 12-week-old male Wistar rats were divided into three groups, and were fed with a control, a high-fat (65 % lipid energy) or a high-fructose diet (65 % fructose energy) for 10 weeks. BW, body fat mass (2H2O dilution method), IS (euglycaemic–hyperinsulinaemic clamp technique), plasma glucose, insulin, NEFA, TAG and total cholesterol were assessed before and at the end of 10-week period. Cholesterol was measured in plasma lipoproteins separated from pooled samples of each group and each time period by using fast-protein liquid chromatography. All rats had similar BW at the end of the 10-week period. Body fat mass was higher in the high-fat group compared to the control group. There was no change in basal glycaemia and insulinaemia. The IS was lower in the high-fat group and was unchanged in the high-fructose group, compared to the control group. Plasma TAG concentration and cholesterol distribution in lipoproteins did not change over time in any group. Plasma NEFA concentration decreased, whereas plasma TAG concentration increased over time, regardless of the diet in both cases. The 10-week high-fat diet led to obesity and low IS, whereas rats fed with the high-fructose diet exhibited no change in IS and lipidaemia. The high-fat diet had more deleterious response than high-fructose diet to induce obesity and low IS in rats.