We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Copy number variants (CNVs) have been associated with the risk of schizophrenia, autism and intellectual disability. However, little is known about their spectrum of psychopathology in adulthood.
Methods
We investigated the psychiatric phenotypes of adult CNV carriers and compared probands, who were ascertained through clinical genetics services, with carriers who were not. One hundred twenty-four adult participants (age 18–76), each bearing one of 15 rare CNVs, were recruited through a variety of sources including clinical genetics services, charities for carriers of genetic variants, and online advertising. A battery of psychiatric assessments was used to determine psychopathology.
Results
The frequencies of psychopathology were consistently higher for the CNV group compared to general population rates. We found particularly high rates of neurodevelopmental disorders (NDDs) (48%), mood disorders (42%), anxiety disorders (47%) and personality disorders (73%) as well as high rates of psychiatric multimorbidity (median number of diagnoses: 2 in non-probands, 3 in probands). NDDs [odds ratio (OR) = 4.67, 95% confidence interval (CI) 1.32–16.51; p = 0.017) and psychotic disorders (OR = 6.8, 95% CI 1.3–36.3; p = 0.025) occurred significantly more frequently in probands (N = 45; NDD: 39[87%]; psychosis: 8[18%]) than non-probands (N = 79; NDD: 20 [25%]; psychosis: 3[4%]). Participants also had somatic diagnoses pertaining to all organ systems, particularly conotruncal cardiac malformations (in individuals with 22q11.2 deletion syndrome specifically), musculoskeletal, immunological, and endocrine diseases.
Conclusions
Adult CNV carriers had a markedly increased rate of anxiety and personality disorders not previously reported and high rates of psychiatric multimorbidity. Our findings support in-depth psychiatric and medical assessments of carriers of CNVs and the establishment of multidisciplinary clinical services.
Cardiac intensivists frequently assess patient readiness to wean off mechanical ventilation with an extubation readiness trial despite it being no more effective than clinician judgement alone. We evaluated the utility of high-frequency physiologic data and machine learning for improving the prediction of extubation failure in children with cardiovascular disease.
Methods:
This was a retrospective analysis of clinical registry data and streamed physiologic extubation readiness trial data from one paediatric cardiac ICU (12/2016-3/2018). We analysed patients’ final extubation readiness trial. Machine learning methods (classification and regression tree, Boosting, Random Forest) were performed using clinical/demographic data, physiologic data, and both datasets. Extubation failure was defined as reintubation within 48 hrs. Classifier performance was assessed on prediction accuracy and area under the receiver operating characteristic curve.
Results:
Of 178 episodes, 11.2% (N = 20) failed extubation. Using clinical/demographic data, our machine learning methods identified variables such as age, weight, height, and ventilation duration as being important in predicting extubation failure. Best classifier performance with this data was Boosting (prediction accuracy: 0.88; area under the receiver operating characteristic curve: 0.74). Using physiologic data, our machine learning methods found oxygen saturation extremes and descriptors of dynamic compliance, central venous pressure, and heart/respiratory rate to be of importance. The best classifier in this setting was Random Forest (prediction accuracy: 0.89; area under the receiver operating characteristic curve: 0.75). Combining both datasets produced classifiers highlighting the importance of physiologic variables in determining extubation failure, though predictive performance was not improved.
Conclusion:
Physiologic variables not routinely scrutinised during extubation readiness trials were identified as potential extubation failure predictors. Larger analyses are necessary to investigate whether these markers can improve clinical decision-making.
Meeting the complex demands of conservation requires a multi-skilled workforce operating in a sector that is respected and supported. Although professionalization of conservation is widely seen as desirable, there is no consistent understanding of what that entails. Here, we review whether and how eight elements of professionalization observed in other sectors are applicable to conservation: (1) a defined and respected occupation; (2) official recognition; (3) knowledge, learning, competences and standards; (4) paid employment; (5) codes of conduct and ethics; (6) individual commitment; (7) organizational capacity; and (8) professional associations. Despite significant achievements in many of these areas, overall progress is patchy, and conventional concepts of professionalization are not always a good fit for conservation. Reasons for this include the multidisciplinary nature of conservation work, the disproportionate influence of elite groups on the development and direction of the profession, and under-representation of field practitioners and of Indigenous peoples and local communities with professional-equivalent skills. We propose a more inclusive approach to professionalization that reflects the full range of practitioners in the sector and the need for increased recognition in countries and regions of high biodiversity. We offer a new definition that characterizes conservation professionals as practitioners who act as essential links between conservation action and conservation knowledge and policy, and provide seven recommendations for building a more effective, inclusive and representative profession.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.