Carbon nanotubes are attractive for switching applications since electrostatically-actuated CNT switches have low actuation voltages and power requirements, while allowing GHz switching speeds that stem from the inherently high elastic modulus and low mass of the CNT. Our first NEM structure, the air-bridge switch, consists of suspended single-walled nanotubes (SWNTs) that lie above a sputtered Nb electrode. Electrical measurements of these air-bridge devices show well-defined ON and OFF states as a dc bias of a few volts is applied. The switches were measured to have switching times down to a few nanoseconds. Our second NEM structure, the vertical CNT switch, consists of nanotubes grown perpendicular to the substrate. Vertical multi-walled nanotubes (MWNTs) are grown directly on a heavily doped Si substrate, from 200 − 300 nm wide, ∼ 1 μm deep nano-pockets, with Nb metal electrodes to result in the formation of a vertical single-pole-double-throw CNT switch architecture.