We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
This paper addresses an important process issue in tie integration of chemical mechanical polishing (CMP) with interlayer dielectric (ILD) deposition for advanced back end processing. Gap fill between metal lines is achieved by using a dep-etch-dep technique for the tetraethylorthosilicate (TEOS) ILD deposition. The ILD layer is then planarized by CMP. Vias are etched through the ILD and filled with tungsten plugs in a blanket tungsten deposition and tungsten CMP sequence. Delamination has been observed at the interface between the TEOS layers following the blanket tungsten deposition and before or during tungsten CMP. The weak interface between the TEOS layers was found to be the result of residual carbon and fluorine from the tetraflouromethane (CF4) doped etch process. The interface between the TEOS layers was examined using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Experiments were carried out to determine if the residue and subsequent delamination could be eliminated by modifying the dep-etch-dep process. An improved process was identified and has been implemented on a 0.5μm CMOS and mixed-mode BiCMOS production line with no subsequent occurrence of interfacial delamination.
Email your librarian or administrator to recommend adding this to your organisation's collection.