We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Epidemiologic studies have focused on the effects of iodine intake on the risk of thyroid cancer. However, their relationship is still obscure. The objective of this study was to examine the association in the Chinese population. A new ecological study which combined the Annual Report of Cancer, the Survey of Iodine Deficiency Disorder Surveillance and the water iodine survey were conducted to analyze the relationship between iodine intake and the thyroid cancer incidence in China. In total, 281 counties were included. Thyroid cancer incidence was negatively correlated with the consumption rate of qualified iodized salt (CRQIS) and positively correlated with goiter prevalence (GP) of children aged 8˜10 years, residents’ annual income and coastal status. Areas with a low CRQIS and areas with a high GP had a relatively high incidence of thyroid cancer. Regression models showed that a low CRQIS and a high GP in children aged 8˜10 years (both reflecting iodine deficiency status) play a substantial role in thyroid cancer incidence in both males and females. Additionally, living in coastal areas and having a high annual income may also increase the risk of thyroid cancer. These findings suggest that mild iodine deficiency may contribute to the exceptionally high incidence of thyroid cancer in some areas in China. Maintaining appropriate iodine nutrition not only helps to eliminate IDD, but also may help to reduce the occurrence of thyroid cancer.
Meiosis is a highly conserved process, and is responsible for the production of haploid gametes and generation of genetic diversity. We previously identified the transferrin receptor (TFRC) in the proteome profile of mice neonatal testes, indicating the involvement of the TFRC in meiosis. However, the exact molecular role of the TFRC in meiosis remains unclear. In this study, we aimed to determine the function of the TFRC in neonatal testicular development by TFRC knockdown using the testis culture platform. Our results showed high TFRC expression in 2-week testes, corresponding to the first meiotic division. Targeting TFRC using morpholino oligonucleotides resulted in clear spermatocyte apoptosis. In addition, we used the chromosomal spread technique to show that a deficiency of TFRC caused the accumulation of leptotene and zygotene spermatocytes, and a decrease of pachytene spermatocytes, indicating early meiotic arrest. Moreover, the chromosomes of TFRC-deficient pachytene spermatocytes displayed sustained γH2AX association, as well as SYCP1/SYCP3 dissociation beyond the sex body. Therefore, our results demonstrated that the TFRC is essential for the progression of spermatocyte meiosis, particularly for DNA double-stranded break repair and chromosomal synapsis.
The ablation and acceleration of diamond-like high-density carbon foils irradiated by thermal X-ray radiations are investigated with radiation hydrodynamics simulations. The time-dependent front of the ablation wave is given numerically for radiation temperatures in the range of 100–300 eV. The mass ablation rates and ablation pressures can be derived or implied from the coordinates of ablation fronts, which agree well with reported experiment results of high-density carbon with radiation temperatures Trad in the range of 160–260 eV. It is also found that the $T_{{\rm rad}}^3$ scaling law for ablation rates does not apply to Trad above 260 eV. The trajectories of targets and hydrodynamic efficiencies for different target thicknesses can be derived from the coordinates of ablation fronts using a rocket model and the results agree well with simulations. The peak hydrodynamic efficiencies of the acceleration process are investigated for different foil thicknesses and radiation temperatures. Higher radiation temperatures and target thicknesses result in higher hydrodynamic efficiencies. The simulation results are useful for the design of fusion capsules.
Since the outbreak of 2019 novel coronavirus (2019-nCoV) infection in Wuhan City, China, pediatric cases have gradually increased. It is very important to prevent cross-infection in pediatric fever clinics, to identify children with fever in pediatric fever clinics, and to strengthen the management of pediatric fever clinics. According to prevention and control programs, we propose the guidance on the management of pediatric fever clinics during the nCoV pneumonia epidemic period, which outlines in detail how to optimize processes, prevent cross-infection, provide health protection, and prevent disinfection of medical staff. The present consideration statement summarizes current strategies on the pre-diagnosis, triage, diagnosis, treatment, and prevention of 2019-nCoV infection, which provides practical suggestions on strengthening the management of pediatric fever clinics during the nCoV pneumonia epidemic period.
In the process of composing a double-differenced positioning model, it is difficult to separate different frequency signals between code division multiple access (CDMA) systems, the single-difference ambiguity of the pivot satellite and phase differential inter-system biases (PDISBs). Hence it is difficult to calibrate in advance the bias between systems in order to build an inter-system model which only needs one pivot satellite. Based on analysis of the stability of PDISB parameters for non-overlapping frequency CDMA systems, this study adopts a particle filter to estimate the fractional part of the PDISBs (F-PDISBs) between the systems and proposes a particle filter-based inter-system positioning model. Results show that the F-PDISBs and code DISBs for the baselines with the same receiver types and some with different receiver types are rather stable over time and for these baselines it is feasible to use a particle filter to estimate the F-PDISB parameters in the initial stage. Having attained the F-PDISBs, the inter-system model can be constructed to improve positioning accuracy in complex operational environments.
Several observational studies have investigated the association of insomnia with psychiatric disorders. Such studies yielded mixed results, and whether these associations are causal remains unclear. Thus, we aimed to identify the causal relationships between insomnia and five major psychiatric disorders.
Methods:
The analysis was implemented with six genome-wide association studies; one for insomnia and five for psychiatric disorders (attention-deficit/hyperactivity disorder, autism spectrum disorder, major depressive disorder, schizophrenia, and bipolar disorder). A heterogeneity in dependent instrument (HEIDI) approach was used to remove the pleiotropic instruments, Mendelian randomization (MR)-Egger regression was adopted to test the validity of the screened instruments, and bidirectional generalized summary data-based MR was performed to estimate the causal relationships between insomnia and these major psychiatric disorders.
Results:
We observed significant causal effects of insomnia on the risk of autism spectrum disorder and bipolar disorder, with odds ratios of 1.739 (95% confidence interval: 1.217–2.486, p = 0.002) and 1.786 (95% confidence interval: 1.396–2.285, p = 4.02 × 10−6), respectively. There was no convincing evidence of reverse causality for insomnia with these two disorders (p = 0.945 and 0.546, respectively). When insomnia was considered as either the exposure or outcome variable, causal estimates for the remaining three psychiatric disorders were not significant.
Conclusions:
Our results suggest a causal role of insomnia in autism spectrum disorder and bipolar disorder. Future disease models should include insomnia as a factor for these two disorders to develop effective interventions. More detailed mechanism studies may also be inspired by this causal inference.
The Chinese National Twin Registry (CNTR), initiated in 2001, has now become the largest twin registry in Asia. From 2015 to 2018, the CNTR continued to receive Chinese government funding and had recruited 61,566 twin-pairs by 2019 to study twins discordant for specific exposures such as environmental factors, and twins discordant for disease outcomes or measures of morbidity. Omic data, including genetics, genomics, metabolomics, and proteomics, and gut microbiome will be tested. The integration of omics and digital technologies in public health will advance our understanding of precision public health. This review introduces the updates of the CNTR, including study design, sample size, biobank, zygosity assessment, advances in research and future systems epidemiologic research.
Inter-system code double differencing is an effective method for improving the positioning accuracy of low-cost receivers in complex environments. Due to the adoption of Frequency Division Multiple Access (FDMA), Globalnaya Navigazionnaya Sputnikovaya Sistema (GLONASS) code observations are affected by the Inter-Frequency Code Biases (IFCBs), which makes it difficult to calculate the Differential Inter-System Code Biases (DISCBs) between GLONASS and the Code Division Multiple Access (CDMA) systems directly. In this contribution, the focus is on the performance of tightly combined Global Positioning System (GPS) and GLONASS code Double Difference (DD) positioning. After analysing the relationship between IFCBs and GLONASS channel numbers, an IFCB correction model and an inter-system code differencing model between GLONASS and GPS are proposed. Results show that even if there is no obvious relationship between IFCBs and channel numbers, the long-term stable IFCB values of each satellite can be obtained by using the proposed model. In addition, the GPS + GLONASS DISCB is also stable. Therefore, compared with the intra-system model, the inter-system model can benefit from prior IFCBs and DISCBs parameters and thus can significantly improve the positioning accuracy in obstructed environments.
Health translation readability assessment represents an important yet largely underexplored research area in translation studies. This chapter introduces an integrated analytical system developed for the computer-aided assessment of the readability of Chinese health translations. The system comprises two components which are a computerised Chinese text lexical profile analyser; and a data-driven statistical instrument that can be used to diagnose and label the readability level of Chinese translations and non-translated health education materials. The online Chinese lexical profile analyser was informed by recent research in corpus linguistics and Chinese educational literacy. It includes thirty-nine individual and compound lexical features to enable in-depth and systematic analyses of the lexical complexity and textual coherence of Chinese health education and promotion materials. The statistical instrument was developed using a large Australian Chinese Health Translation Corpus. The statistical instrument built contains two measurement scales which are related to the information load and the lexical technicality as two important indicators of the readability of Chinese health education resources. The study demonstrated the viability and effectiveness of developing digital analytical tools and instruments for the objective assessment of the readability of health materials, especially health translations which hold the key to the success and sustainability of health promotion and communication in multicultural societies with diverse population groups.
CrFeNiTix (x = 0.2, 0.3, 0.4, 0.5, and 0.6 molar ratio) compositionally complex alloys were fabricated by vacuum arc melting to investigate the microstructure, hardness, and compressive properties. The results revealed that CrFeNiTix alloys consisted of the principal face-centered cubic (FCC) phase and body-centered cubic (BCC) solid solution, with an amount of (Ni, Ti)-rich hexagonal close-packed phase. CrFeNiTix alloys exhibited the typical dendrite. Ti0.2 and Ti0.3 alloys were composed of FCC and BCC solid solutions in the dendrite, as well as ε (Ni3Ti) and R (Ni2.67Ti1.33) phases in the inter-dendrite, simultaneously. For Ti0.4, Ti0.5, and Ti0.6 alloys, (Fe, Cr)-rich solid solution separated out and ε phase transformed into R phase gradually. Meanwhile, TEM analysis indicated that Ti0.4 alloy matrix consisted of the principal FCC phase containing (Ni, Ti)-rich intragranular nanoprecipitates. The hardness values of CrFeNiTix alloys were increased with the addition of Ti content and the high compressive strength of CrFeNiTix alloys was maintained, which was attributed to the solid solution strengthening and precipitation hardening.
To understand the effect of pH value on the corrosion and corrosion fatigue behavior of AM60 magnesium alloy, electrochemical tests, viz., electrochemical impedance spectroscopy (EIS) and fatigue tests, were carried out in PBS (phosphate buffered saline) solutions of pH 5.2, 7.4, and 9.0. The microstructure was investigated by scanning electron microscopy (SEM). Results are as follows: (i) the corrosion mechanism of AM60 under different pH values was different according to EIS; (ii) the corrosion resistance and corrosion fatigue life reduced in the following order: pH 9.0 > pH 7.4 > pH 5.2; (iii) the crack initiation was associated with hydrogen embrittlement of AM60 on the basis of fractographic analysis.
Two phases of diabase-sill-forming magmatism are recorded within the Badu anticline where magmas were emplaced into upper Palaeozoic carbonates and clastic rocks of the Youjiang fold-and-thrust belt in the SW South China Block, China. Zircons from these diabase units yield weighted mean U–Pb ages of 249.2±2.0 Ma and 187.1±3.3 Ma, and magmatic oxygen fugacity values from ‒20 to ‒6 (average of ‒12, equating to FMQ +5) and ‒20 to ‒10 (average of ‒15, equating to FMQ +2), respectively. These data indicate that the sills were emplaced during Early Triassic and Early Jurassic times. The discovery of c. 250 Ma mafic magmatism in this area was probably related to post-flood-basalt extension associated with the Emeishan mantle plume or rollback of the subducting Palaeo-Tethys slab. The c. 190 Ma diabase sills indicate that the southwestern South China Block records Early Jurassic mafic magmatism and lithospheric extension that was likely associated with a transition from post-collisional to within-plate tectonic regimes. The emplacement of diabase intrusions at depth may have driven hydrothermal systems, enabling the mobilization of elements from sedimentary rocks and causing the formation of a giant epigenetic metallogenic domain. The results indicate that high-oxygen-fugacity materials within basement rocks caused crustal contamination of the magmas, contributing to the wide range of oxygen fugacity conditions recorded by the Au-bearing Badu diabase. In addition, data from inherited xenocrystic zircons within the Badu diabase and detrital zircons from basement rocks suggest that the Neoproterozoic Jiangshao suture extends to the south of the Badu anticline.
We consider compound Poisson claims reserving models applied to the paid claims and to the number of payments run-off triangles. We extend the standard Poisson-gamma assumption to account for over-dispersion in the payment counts and to account for various mean and variance structures in the individual payments. Two generalized linear models are applied consecutively to predict the unpaid claims. A bootstrap is used to estimate the mean squared error of prediction and to simulate the predictive distribution of the unpaid claims. We show that the extended compound Poisson models make reasonable predictions of the unpaid claims.
Approaching the problem from the internal factors and in particular the inherent state model of a Kalman Filter, this paper presents a novel Strapdown Inertial Navigation System (SINS) modelling, which is obtained with a pseudo-north-oriented mechanisation in a pseudo-geographic frame. Improved modelling associated with the backward algorithm is proposed to achieve velocity-aided in-motion alignment. Compared with traditional algorithms, the proposed method can eliminate the influence of alignment model on the performance of initial alignment caused by SINS modelling. On the other hand, the backward process can still be used to accelerate the process of alignment. As a result, the proposed method is expected to assist those methods only considered from external factors (such as coarse accuracy, process noise, measurement noise, and so on) to improve the stability and robustness of a velocity-aided in-motion alignment system and to solve the modelling problem of high latitude alignment without sacrificing alignment accuracy. Finally, simulations and field experiments with a navigation-grade SINS demonstrate the superior performance of the proposed method.
We propose a Bayesian spline model which uses a natural cubic B-spline basis with knots placed at every development period to estimate the unpaid claims. Analogous to the smoothing parameter in a smoothing spline, shrinkage priors are assumed for the coefficients of basis functions. The accident period effect is modeled as a random effect, which facilitate the prediction in a new accident period. For model inference, we use Stan to implement the no-U-turn sampler, an automatically tuned Hamiltonian Monte Carlo. The proposed model is applied to the workers' compensation insurance data in the United States. The lower triangle data is used to validate the model.
Phase predictions and characterizations on as-solidified septenary refractory high-entropy alloy, CrMoNbReTaVW, are presented. The simulated solidification process predicts a single body-centered-cubic (BCC) crystal structure with the tendency of compositional segregation. X-ray diffraction results confirm the “single-phase-like” BCC structure, while further experimental characterizations reveal the existence of multiple grains with significantly different compositions yet the same crystal structure and similar lattice parameters.
Outside surface fluctuations of inertial confinement fusion (ICF) capsule greatly affect the implosion performance. An atomic force microscope (AFM)-based profilometer is developed to precisely characterize the capsule surface with nanometer resolution. With the standard nine surface profiles and the complete coverage data, 1D and 2D power spectra are obtained to quantitatively qualify the capsule. Capsule center fast aligning, orbit traces automatic recording, 3D capsule orientation have been studied to improve the accuracy and efficiency of the profilometer.
Monochamol (2-undecyloxy-1-ethanol) is a male-produced aggregation pheromone for several Monochamus Dejean (Coleoptera: Cerambycidae) species. We conducted trapping experiments in Canada, Poland, and China to test whether monochamol was attractive to additional Monochamus species and if attraction was synergised by plant volatiles and bark beetle (Coleoptera: Curculionidae) pheromones. We provide the first evidence of attraction for M. urussovii (Fischer) and M. saltuarius (Gebler) to monochamol or monochamol+kairomones. The highest numbers of M. urussovii were captured in traps baited with monochamol+plant volatiles (Manuka oil, ethanol and (95/5±) α−pinene). Captures of M. saltuarius were highest in traps baited with monochamol, with the addition of cubeb oil tending to reduce captures. The highest numbers of M. scutellatus (Say) were captured in traps baited with monochamol+kairomones. A similar pattern in trap captures was found for M. notatus (Drury), M. marmorator Kirby, M. carolinensis (Olivier), and M. mutator LeConte. Detection rates, that is, proportion of traps capturing at least one specimen, was highest for traps baited with monochamol plus kairomones, particularly for less-common species. These results support the emerging hypothesis that pheromone compounds can attract related cerambycid species with cumulative evidence for attraction to monochamol for 12 species of Monochamus worldwide.