We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Coastal eutrophication and hypoxia remain a persistent environmental crisis despite the great efforts to reduce nutrient loading and mitigate associated environmental damages. Symptoms of this crisis have appeared to spread rapidly, reaching developing countries in Asia with emergences in Southern America and Africa. The pace of changes and the underlying drivers remain not so clear. To address the gap, we review the up-to-date status and mechanisms of eutrophication and hypoxia in global coastal oceans, upon which we examine the trajectories of changes over the 40 years or longer in six model coastal systems with varying socio-economic development statuses and different levels and histories of eutrophication. Although these coastal systems share common features of eutrophication, site-specific characteristics are also substantial, depending on the regional environmental setting and level of social-economic development along with policy implementation and management. Nevertheless, ecosystem recovery generally needs greater reduction in pressures compared to that initiated degradation and becomes less feasible to achieve past norms with a longer time anthropogenic pressures on the ecosystems. While the qualitative causality between drivers and consequences is well established, quantitative attribution of these drivers to eutrophication and hypoxia remains difficult especially when we consider the social economic drivers because the changes in coastal ecosystems are subject to multiple influences and the cause–effect relationship is often non-linear. Such relationships are further complicated by climate changes that have been accelerating over the past few decades. The knowledge gaps that limit our quantitative and mechanistic understanding of the human-coastal ocean nexus are identified, which is essential for science-based policy making. Recognizing lessons from past management practices, we advocate for a better, more efficient indexing system of coastal eutrophication and an advanced regional earth system modeling framework with optimal modules of human dimensions to facilitate the development and evaluation of effective policy and restoration actions.
The association between dietary Cu intake and mortality risk remains uncertain. We aimed to investigate the relationship of dietary Cu intake with all-cause mortality among Chinese adults. A total of 17 310 participants from the China Health and Nutrition Survey, a national ongoing open cohort of Chinese participants, were included in the analysis. Dietary intake was measured by three consecutive 24-h dietary recalls in combination with a weighing inventory over the same 3 d. The average intakes of the 3-d dietary macronutrients and micronutrients were calculated. The study outcome was all-cause mortality. During a median follow-up of 9·0 years, 1324 (7·6 %) participants died. After adjusting for sex, age, BMI, ever alcohol drinking, ever smoking, education levels, occupations, urban or rural residents, systolic blood pressure, diastolic blood pressure and the intakes of fat, protein and carbohydrate, the association between dietary Cu intake and all-cause mortality followed a J-shape (Pfor nonlinearity = 0·047). When dietary Cu intake was assessed as quartiles, compared with those in the first quartile (<1·60 mg/d), the adjusted hazard ratios for all-cause mortality were 0·87 (95 % CI (0·71, 1·07)), 0·98 (95 % CI (0·79, 1·21)) and 1·49 (95 % CI (1·19, 1·86)), respectively, in participants in the second (1·60–<1·83 mg/d), third (1·83–<2·09 mg/d) and fourth (≥2·09 mg/d) quartiles. A series of subgroup analyses and sensitivity analyses showed similar results. Overall, our findings emphasised the importance of maintaining optimal dietary Cu intake levels for prevention of premature death.
Depression is a debilitating mental disorder that often coexists with anxiety. The genetic mechanisms of depression and anxiety have considerable overlap, and studying depression in non-anxiety samples could help to discover novel gene. We assess the genetic variation of depression in non-anxiety samples, using genome-wide association studies (GWAS) and linkage disequilibrium score regression (LDSC).
Methods
The GWAS of depression score and self-reported depression were conducted using the UK Biobank samples, comprising 99,178 non-anxiety participants with anxiety score <5 and 86,503 non-anxiety participants without self-reported anxiety, respectively. Replication analysis was then performed using two large-scale GWAS summary data of depression from Psychiatric Genomics Consortium (PGC). LDSC was finally used to evaluate genetic correlations with 855 health-related traits based on the primary GWAS.
Results
Two genome-wide significant loci for non-anxiety depression were identified: rs139702470 (p = 1.54 × 10−8, OR = 0.29) locate in PIEZO2, and rs6046722 (p = 2.52 × 10−8, OR = 1.09) locate in CFAP61. These associated genes were replicated in two GWAS of depression from PGC, such as rs1040582 (preplication GWAS1 = 0.02, preplication GWAS2 = 2.71 × 10−3) in CFAP61, and rs11661122 (preplication GWAS1 = 8.16 × 10−3, preplication GWAS2 = 8.08 × 10−3) in PIEZO2. LDSC identified 19 traits genetically associated with non-anxiety depression (p < 0.001), such as marital separation/divorce (rg = 0.45, SE = 0.15).
Conclusions
Our findings provide novel clues for understanding of the complex genetic architecture of depression.
The role of neurological proteins in the development of bipolar disorder (BD) and schizophrenia (SCZ) remains elusive now. The current study aims to explore the potential genetic correlations of plasma neurological proteins with BD and SCZ.
Methods:
By using the latest genome-wide association study (GWAS) summary data of BD and SCZ (including 41,917 BD cases, 11,260 SCZ cases, and 396,091 controls) derived from the Psychiatric GWAS Consortium website (PGC) and a recently released GWAS of neurological proteins (including 750 individuals), we performed a linkage disequilibrium score regression (LDSC) analysis to detect the potential genetic correlations between the two common psychiatric disorders and each of the 92 neurological proteins. Two-sample Mendelian randomisation (MR) analysis was then applied to assess the bidirectional causal relationship between the neurological proteins identified by LDSC, BD and SCZ.
Results:
LDSC analysis identified one neurological protein, NEP, which shows suggestive genetic correlation signals for both BD (coefficient = −0.165, p value = 0.035) and SCZ (coefficient = −0.235, p value = 0.020). However, those association did not remain significant after strict Bonferroni correction. Two sample MR analysis found that there was an association between genetically predicted level of NEP protein, BD (odd ratio [OR] = 0.87, p value = 1.61 × 10−6) and SCZ (OR = 0.90, p value = 4.04 × 10−6). However, in the opposite direction, there is no genetically predicted association between BD, SCZ, and NEP protein level.
Conclusion:
This study provided novel clues for understanding the genetic effects of neurological proteins on BD and SCZ.
During the movement of an optical mirror processing robot (OMPR), the movement error of each branch chain leads to contour errors of the grinding tool, which reduce the accuracy of the optical mirror surface. To improve the processing accuracy of an OMPR, it is necessary to study the control and compensation strategy of its contour error. In this study, first, a kinematics analysis of an OMPR is conducted, and the trajectory of the end execution point in the world coordinate system is transformed into the fixed coordinate system of the robot. Combined with the common trajectory of optical mirror processing, based on the Frenet coordinate system, contour error models of the OMPR in straight line, arc, and spiral trajectories are established. Subsequently, the contour error, feedforward channel gain, and compensation channel gain models of the parallel module are established in the task space, and concurrently, the control variables and stability of the system are analyzed. Finally, the established feedforward combined multi-axis cross-coupling contour control compensation strategy is analyzed experimentally to verify its accuracy and effectiveness. It provides a theoretical basis for a robot to directly face the precision processing object using the control and compensation strategy in a future research study to improve the molding accuracy of a surface and optimize the processing technology of a large-scale optical mirror.
The Brain Health Test-7 (BHT-7) is a revised tool from the original BHT, containing more tests about frontal lobe function. It was developed with theaim of identifying patients with mild cognitive impairment (MCI) and early dementia.
Research objective
Here we report the validity of the BHT-7 versus the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) in differentpsychiatry or neurology clinics.
Methods
Patients with memory complaints were recruited in this study from the outpatient clinic of psychiatry or neurology in 3 different kinds of hospitals. Allpatients underwent the evaluation of the BHT-7, MMSE, MoCA, and clinical dementia rating (CDR). The clinical diagnosis (normal, MCI, dementia) was made by consensus meeting, taking into account all available data.
Demographic data and the scores of the MMSE, MoCA, and BHT-7 between groups were compared. Logistic regression was adopted for analysis of optimal cutoff values, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), receiver operating characteristic (ROC) curve,and the area under the ROC curve (AUC).
Results
We enrolled a total of 1090 subjects (normal 402, MCI 317, dementia 371); of them, 705 (64.7%) were female. There was a statistically significant differencein age, years of education, and 3 cognitive test scores among the 3 groups.
Compared with the MMSE and MoCA, the BHT-7 performed slightly betterthan MMSE and MoCA in differentiating MCI or dementia from the normalcontrols (Table 1). For BHT- 7, the cutoff point was 17 between normal andMCI, and 14 between normal and dementia. These cutoff points for BHT-7were consistent through 3 different clinical settings, but inconsistent for MMSE and MoCA. The testing time for the BHT-7 was about 5-7 minutes, shorter than that of the MMSE and MoCA.
Conclusion
Compared with MMSE and MoCA, the BHT-7 showed slightly better performance in differentiating normal from MCI or dementia subjects. The testing time for the BHT-7 was shorter, and its cutoff points were consistent through different outpatient clinic settings. The results support that BHT-7 is auseful cognitive screening tool for MCI or early dementia in various hospital settings.
Table 1
Comparisons of the performance of BHT-7, MMSE, MoCA
Sarcopenia is a core contributor to several health consequences, including falls, fractures, physical limitations and disability. The pathophysiological processes of sarcopenia may be counteracted with the proper diet, delaying sarcopenia onset. Dietary pattern analysis is a whole diet approach used to investigate the relationship between diet and sarcopenia. Here, we aimed to investigate this relationship in an elderly Chinese population. A cross-sectional study with 2423 participants aged more than 60 years was performed. Sarcopenia was defined based on the guidelines of the Asian Working Group for Sarcopenia, composed of low muscle mass plus low grip strength and/or low gait speed. Dietary data were collected using a FFQ that included questions on 100 food items along with their specified serving sizes. Three dietary patterns were derived by factor analysis: sweet pattern, vegetable pattern and animal food pattern. The prevalence of sarcopenia was 16·1 %. The higher vegetable pattern score and animal food pattern score were related to lower prevalence of sarcopenia (Ptrend = 0·006 and < 0·001, respectively); the multivariate-adjusted OR of the prevalence of sarcopenia in the highest v. lowest quartiles were 0·54 (95 % CI 0·34, 0·86) and 0·50 (95 % CI 0·33, 0·74), separately. The sweet pattern score was not significantly related to the prevalence of sarcopenia. The present study showed that vegetable pattern and animal food pattern were related to a lower prevalence of sarcopenia in Chinese older adults. Further studies are required to clarify these findings.
The Harihada–Chegendalai ophiolitic mélange, which is located between the Bainaimiao arc and the North China Craton, holds significant clues regarding the tectonic setting of the southern margin of the Central Asian Orogenic Belt. The ophiolitic mélange is mainly composed of gabbroic and serpentinized ultramafic rocks. Here, zircon U–Pb dating, in situ zircon Hf isotopic, whole-rock geochemical and in situ mineral chemical data from the ophiolitic mélange are reported. The zircons in the gabbroic rocks yielded concordia U–Pb ages of 450–448 Ma and exhibited slightly positive ϵHf(t) values (0.87–4.34). The geochemical characteristics of the gabbroic rocks indicate that they were generated from a mantle wedge metasomatized by subduction-derived melts from sediments with continental crust contamination, in a fore-arc tectonic setting. These rocks also experienced the accumulation of plagioclase. The geochemical characteristics of the ultramafic rocks and their Cr-spinels indicate that they may constitute part of residual mantle that has experienced a high degree of partial melting and has interacted with fluids/melts released from the subducted slab in the same fore-arc tectonic setting. The ophiolitic mélange may therefore have formed in this fore-arc tectonic setting, resulting from the northward subduction of the South Bainaimiao Ocean beneath the Bainaimiao arc during Late Ordovician time, prior to the collision between the Bainaimiao arc and the North China Craton during the Silurian to Carboniferous periods.
Wake transitions behind an isolated cube are investigated numerically over a range of Reynolds number (${{\textit {Re}}}$) 1–400. Four flow regimes, namely the orthogonal symmetry–steady ($1 \le {{\textit {Re}}} \le 205$), planar symmetry–steady (PSS, $210 \le {{\textit {Re}}} \le 250$), hairpin-vortex shedding (HS, $255 \le {{\textit {Re}}} \le 305$) and chaotic vortex shedding (${{\textit {Re}}} \ge 310$) regimes, are identified according to spatial symmetries and temporal development of the flow. A weakly nonlinear stability analysis, through a coupled pitchfork bifurcation model proposed in the present study, reveals that the bifurcation to the PSS regime is supercritical and the planar symmetry is retained in the PSS regime because stable points (four) exist only on the two symmetry planes perpendicular to the side faces of the cube. The supercritical Hopf bifurcation to the HS regime is induced by the excessive accumulation of circulation in the downstream tips of merged streamwise vortex tubes behind the cube that subsequently attract the vortex tubes of opposite signs to cut the tips off from them, leading to alternate shedding of streamwise vortex tubes. The planar symmetry observed in the PSS regime is preserved in the three vortex shedding states identified in the HS regime, i.e. single-frequency shedding ($255 \le {{\textit {Re}}} \le 280$), quasi-periodic shedding ($282 \le {{\textit {Re}}} \le 285$) and the high-order synchronised shedding (HS2, $289 \le {{\textit {Re}}} \le 305$). A cascade of period doubling and period halving is discovered in the HS2 state, prior to the flow bifurcation to the chaotic vortex shedding regime, where the planar symmetry is broken. The critical ${{\textit {Re}}}$ values for the bifurcations to PSS and HS regimes are estimated to be ${{\textit {Re}}} \approx 207.0$ and 252.0, respectively, through linear interpolation of the growth rate of flow instabilities.
A fresh look at the 1888 Sikkim Expedition using both Chinese and English language sources yields very different conclusions from that of previous research on the subject. During the course of policymaking, the British Foreign Office and the British Government of India did not collaborate to devise a plan to invade Tibet; conversely, their aims differed and clashed frequently. During the years leading to war, the largest newspapers in British India gave plenty of coverage to the benefits of trade with Tibet, thus influencing British foreign policy and contributing indirectly to the outbreak of war. The Tibetan army was soundly defeated in the war, while the British troops suffered only light casualties. Although the Tibetan elites remained committed to the war, the lower classes of Tibetan society quickly grew weary of it. During the war, the British made much use of local spies and enjoyed an advantage in intelligence gathering, which contributed greatly to their victory. Finally, although the war was initially fought over trade issues, the demarcation of the Tibetan-Sikkim border replaced trade issues as the main point of contention during the subsequent peace negotiations. During the negotiations, Sheng Tai, the newly appointed Amban of Tibet, tried his best to defend China's interests.
Since the outbreak of 2019 novel coronavirus (2019-nCoV) infection in Wuhan City, China, pediatric cases have gradually increased. It is very important to prevent cross-infection in pediatric fever clinics, to identify children with fever in pediatric fever clinics, and to strengthen the management of pediatric fever clinics. According to prevention and control programs, we propose the guidance on the management of pediatric fever clinics during the nCoV pneumonia epidemic period, which outlines in detail how to optimize processes, prevent cross-infection, provide health protection, and prevent disinfection of medical staff. The present consideration statement summarizes current strategies on the pre-diagnosis, triage, diagnosis, treatment, and prevention of 2019-nCoV infection, which provides practical suggestions on strengthening the management of pediatric fever clinics during the nCoV pneumonia epidemic period.
Flavonoid-rich foods have shown a beneficial effect against non-alcoholic fatty liver disease (NAFLD) in short-term randomised trials. It is uncertain whether the usual dietary intake of flavonoids may benefit patients with NAFLD. The present study evaluated the association between the usual intake of flavonoids and the risk of progression in NAFLD. The prospective study included 2694 adults from the Guangzhou Nutrition and Health Study. Face-to-face interviews using a seventy-nine-item FFQ were administered to assess habitual dietary flavonoid intake, while abdominal ultrasonography was conducted to evaluate the presence and degree of NAFLD, with measurements conducted 3 years apart. After adjustment for potential confounders, higher flavonoid intakes were gradely associated with reduced risks of worsen NAFLD status. The relative risks of worsening (v. non-worsening) NAFLD in the highest (v. lowest) quintile were 0·71 (95 % CI 0·54, 0·93) for total flavonoids, 0·74 (95 % CI 0·57, 0·95) for flavanones, 0·74 (95 % CI 0·56, 0·96) for flavan-3-ols, 0·90 (95 % CI 0·68, 1·18) for flavonols, 0·73 (95 % CI 0·56, 0·93) for flavones, 0·79 (95 % CI 0·61, 1·02) for isoflavones and 0·74 (95 % CI 0·57, 0·96) for anthocyanins. An L-shaped relationship was observed between total flavonoid intake and the risk of NAFLD progression. Path analyses showed that the association between flavonoids and NAFLD progression was mediated by decreases in serum cholesterol and homeostasis model assessment of insulin resistance. This prospective study showed that higher flavonoid intake was associated with a lower risk of NAFLD progression in the elderly overweight/obese Chinese population.
This paper presents our sketch drawing artist humanoid robot research. One of the limitations of the existing artist humanoid robot is the lack of feedback on the error that occurs during the drawing process. The contribution of this research is the development of a humanoid robot artist with drawing error correction capability. Based on our previous work with open-loop control pen-and-ink humanoid robot artist, we have implemented a closed-loop visual servoing approach to address this problem. Our experimental results show that this approach is sufficient to correct drawing errors that occur due to mechanical limitation of a robot.
Visual simultaneous localization and mapping (visual SLAM) has been well developed in recent decades. To facilitate tasks such as path planning and exploration, traditional visual SLAM systems usually provide mobile robots with the geometric map, which overlooks the semantic information. To address this problem, inspired by the recent success of the deep neural network, we combine it with the visual SLAM system to conduct semantic mapping. Both the geometric and semantic information will be projected into the 3D space for generating a 3D semantic map. We also use an optical-flow-based method to deal with the moving objects such that our method is capable of working robustly in dynamic environments. We have performed our experiments in the public TUM dataset and our recorded office dataset. Experimental results demonstrate the feasibility and impressive performance of the proposed method.
Fe therapy can be effective in heart failure patients both with and without anaemia. However, the role of Fe therapy in such patients is still uncertain. In this review, the aim was to evaluate the efficacy and safety of Fe therapy in adult patients with heart failure who have reduced ejection fraction (HFrEF). Multiple databases (PubMed, Medline, EMBASE, the Cochrane Library and Clinical Trials) were searched up to December 2017 and the reference lists of relevant articles obtained from the search were reviewed. Data extracted from randomised control trials (RCT) selected for the review were pooled using a fixed effects model or a random effects model, according to heterogeneity between trials. Nine RCT were included in this meta-analysis which included a total of 789 patients who received Fe therapy and who in turn were compared with 585 controls. There was significant improvement in the 6-min walk test (19·05 m, 95 % CI 10·48, 27·62) and peak VO2/kg (0·93 ml/kg per min, 95 % CI 0·16, 1·69) in the Fe supplementation arm. With Fe therapy, fewer patients were hospitalised for heart failure (OR: 0·42, 95 % CI 0·27, 0·65), but no relationship was found for total re-hospitalisation (OR: 0·70, 95 % CI 0·32, 1·51) or mortality (OR: 0·70, 95 % CI 0·38, 1·28). Fe therapy has the potential to improve exercise tolerance, reduce re-hospitalisations for patients with HFrEF having Fe deficiency. In addition, Fe supplementation was found to be safe, with no increased rate of adverse events.