We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Candida auris (CA) is an emerging multidrug-resistant pathogen associated with increased mortality. The environment may play a role, but transmission dynamics remain poorly understood. We sought to limit environmental and patient CA contamination following a sustained unsuspected exposure.
DESIGN
Quasi-experimental observation.
SETTING
A 528-bed teaching hospital.
PATIENTS
The index case patient and 17 collocated ward mates.
INTERVENTION
Immediately after confirmation of CA in the bloodstream and urine of a patient admitted 6 days previously, active surveillance, enhanced transmission-based precautions, environmental cleaning with peracetic acid-hydrogen peroxide and ultraviolet light, and patient relocation were undertaken. Pre-existing agreements and foundational relationships among internal multidisciplinary teams and external partners were leveraged to bolster detection and mitigation efforts and to provide genomic epidemiology.
RESULTS
Candida auris was isolated from 3 of 132 surface samples on days 8, 9, and 15 of ward occupancy, and from no patient samples (0 of 48). Environmental and patient isolates were genetically identical (4–8 single-nucleotide polymorphisms [SNPs]) and most closely related to the 2013 India CA-6684 strain (~200 SNPs), supporting the epidemiological hypothesis that the source of environmental contamination was the index case patient, who probably acquired the South Asian strain from another New York hospital. All isolates contained a mutation associated with azole resistance (K163R) found in the India 2105 VPCI strain but not in CA-6684. The index patient remained colonized until death. No surfaces were CA-positive 1 month later.
CONCLUSION
Compared to previous descriptions, CA dissemination was minimal. Immediate access to rapid CA diagnostics facilitates early containment strategies and outbreak investigations.
Infect Control Hosp Epidemiol 2018;39:53–57
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.