We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The capacity to learn and remember exists in most known animal species, which raises fascinating questions about the role of evolutionary processes. Logic suggests that processing and storing information for future use is likely to be fundamental for an animal’s survival and reproductive success. Foraging for food requires capacities to respond to cues that signal its availability and location, and store memories for future excursions; successful reproduction requires capacities to locate and choose a suitable mate; and, evading predators requires learning about and remembering cues associated with survival threats, such as the presence and location of predators; all of these capacities, either directly or indirectly, enhance reproductive success. Although logical deduction plays an important role in science, empirical tests are needed to confirm, in this case, evolutionary hypotheses about learning and memory. This book is about the ways in which evolutionary hypotheses inform the design of experiments on learning and memory, the empirical methods and tests that have been developed, and the knowledge derived from research programs that reveal relationships between learning, memory, and evolution. The contributors to each chapter provide unique insights into how evolution has influenced a broad array of learning and memory mechanisms across a diverse representation of invertebrate and vertebrate species.
In his Nichomachean ethics, Aristotle suggested that absolute judgments precede relative judgments. This chapter places this notion in an evolutionary context by centering on comparative research on successive negative contrast (SNC). SNC occurs when a downshift from a more preferred to a less preferred reward deteriorates behavior. SNC is observed in experiments with mammals, but not in experiments with goldfish (bony fish), toads (amphibian), or turtles (reptile). Pigeons and starlings (birds) have produced a mixed set of results. Since E. L. Thorndike, an understanding of animal learning has been influenced by the notion that rewards strengthen behavior and nonrewards weaken behavior — the strengthening/weakening principle. Outcomes fitting this principle provide evidence of control by absolute reward value, whereas results that violate this principle, like SNC, suggest control by relative reward value. Comparative research suggests that absolute reward effects are more general than relative reward effects.
Evolution of Learning and Memory Mechanisms is an exploration of laboratory and field research on the many ways that evolution has influenced learning and memory processes, such as associative learning, social learning, and spatial, working, and episodic memory systems. This volume features research by both outstanding early-career scientists as well as familiar luminaries in the field. Learning and memory in a broad range of animals are explored, including numerous species of invertebrates (insects, worms, sea hares), as well as fish, amphibians, birds, rodents, bears, and human and nonhuman primates. Contributors discuss how the behavioral, cognitive, and neural mechanisms underlying learning and memory have been influenced by evolutionary pressures. They also draw connections between learning and memory and the specific selective factors that shaped their evolution. Evolution of Learning and Memory Mechanisms should be a valuable resource for those working in the areas of experimental and comparative psychology, comparative cognition, brain–behavior evolution, and animal behavior.