The preparation, utilization, and understanding of high polymers represents one of the great triumphs of chemistry and materials science in the 20th century. Synthetic polymers have traditionally been used as structural materials and electrical insulators. Biopolymers often exhibit interesting electrical response phenomena. A recent article in the MRS BULLETIN, for example, discussed piezoelectric properties of both synthetic and biopolymer systems. The newer, synthetic electroactive polymeric materials, however, represent one of the most exciting current areas of polymer materials science.
Many synthetic ionic polymer materials are known; perhaps the first were the polyelectrolytes and crosslinked ion exchange materials. These are materials whose backbone contains charges of one sign, balanced by small counter ions of the opposite sign. Such polyelectrolytes have found very important applications in analytical chemistry, water purification, and chemical processing.
Complexes, in which salts are dissolved in neutral polymer hosts, have until recently received less attention. The area of polymer/salt complexes became extremely active following the work of P.V. Wright, who first clearly showed that polyethylene oxide (PEO) is an excellent polymer host for a number of salts, and that the resulting solid polymer/salt complexes are electrical conductors. M. Armand broadened the investigation of electrical properties of polymer/salt complexes and pointed out that these materials might be useful in electrochemical devices, especially batteries.
This article will discuss the formation, properties, behavior, and applications of polymer electrolytes and mixed conductors—that is, polymeric materials in which charge is transported either by ions or by ionic and electronic charge motion. Our concentration will be on solvent-free materials—materials in which no small molecule solvents are present. There is substantial interest, and substantial progress, in the area of solvent-swollen polymer electrolytes.