We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The coronavirus disease 2019 (COVID-19) pandemic has challenged the ability of Emergency Medical Services (EMS) providers to maintain personal safety during the treatment and transport of patients potentially infected. Increased rates of COVID-19 infection in EMS providers after patient care exposure, and notably after performing aerosol-generating procedures (AGPs), have been reported. With an already strained workforce seeing rising call volumes and increased risk for AGP-requiring patient presentations, development of novel devices for the protection of EMS providers is of great importance.
Based on the concept of a negative pressure room, the AerosolVE BioDome is designed to encapsulate the patient and contain aerosolized infectious particles produced during AGPs, making the cabin of an EMS vehicle safer for providers. The objective of this study was to determine the efficacy and safety of the tent in mitigating simulated infectious particle spread in varied EMS transport platforms during AGP utilization.
Methods:
Fifteen healthy volunteers were enrolled and distributed amongst three EMS vehicles: a ground ambulance, an aeromedical-configured helicopter, and an aeromedical-configured jet. Sodium chloride particles were used to simulate infectious particles and particle counts were obtained in numerous locations close to the tent and around the patient compartment. Counts near the tent were compared to ambient air with and without use of AGPs (non-rebreather mask, continuous positive airway pressure [CPAP] mask, and high-flow nasal cannula [HFNC]).
Results:
For all transport platforms, with the tent fan off, the particle generator alone, and with all AGPs produced particle counts inside the tent significantly higher than ambient particle counts (P <.0001). With the tent fan powered on, particle counts near the tent, where EMS providers are expected to be located, showed no significant elevation compared to baseline ambient particle counts during the use of the particle generator alone or with use of any of the AGPs across all transport platforms.
Conclusion:
Development of devices to improve safety for EMS providers to allow for use of all available therapies to treat patients while reducing risk of communicable respiratory disease transmission is of paramount importance. The AerosolVE BioDome demonstrated efficacy in creating a negative pressure environment and workspace around the patient and provided significant filtration of simulated respiratory droplets, thus making the confined space of transport vehicles potentially safer for EMS personnel.
The 2019-2020 “Black Summer” bushfires in Australia focused the attention of the nation on the critical role that volunteer firefighters play in the response to such a disaster, spurring a national conversation about how to best support those on the frontline. The objective of this research was to explore the impact of the Black Summer bushfires on volunteer firefighter well-being and to investigate how to deliver effective well-being support.
Methods:
An explorative qualitative design underpinned by a phenomenological approach was applied. Participant recruitment followed a multi-modal sampling strategy and data were collected through semi-structured, in-depth interviews.
Results:
Qualitative data were collected from 58 participants aged from 23 to 61-years-of-age (average age of 46 years). All self-reported as volunteer firefighters who had responded to the Black Summer bushfires in Australia. Just over 80% of participants were male and the majority lived in the Australian states of New South Wales (65%) and Victoria (32%). All participants reported impact on their well-being, resulting from cumulative trauma exposure, responding to fires in local communities, intense work demands, minimal intervals between deployments, and disruption to primary employment. In regard to supporting well-being, four key themes emerged from data analysis: (1) Well-being support needs to be both proactive and reactive and empower local leaders to “reach in” while encouraging responders to “reach out;” (2) Employee Assistance Programs (EAPs) should not be the only well-being support option available; (3) The sharing of lived experience is important; and (4) Support programs need to address self-stigmatization.
Conclusion:
Participants in this research identified that effective well-being support needs to be both proactive and reactive and holistic in approach.
The coronavirus disease 2019 (COVID-19) pandemic has created challenges in maintaining the safety of prehospital providers caring for patients. Reports have shown increased rates of Emergency Medical Services (EMS) provider infection with COVID-19 after patient care exposure, especially while utilizing aerosol-generating procedures (AGPs). Given the increased risk and rising call volumes for AGP-necessitating complaints, development of novel devices for the protection of EMS clinicians is of great importance.
Drawn from the concept of the powered air purifying respirator (PAPR), the AerosolVE helmet creates a personal negative pressure space to contain aerosolized infectious particles produced by patients, making the cabin of an EMS vehicle safer for providers. The helmet was developed initially for use in hospitals and could be of significant use in the prehospital setting. The objective of this study was to determine the efficacy and safety of the helmet in mitigating simulated infectious particle spread in varied EMS transport platforms during AGP utilization.
Methods:
Fifteen healthy volunteers were enrolled and distributed amongst three EMS vehicles: a ground ambulance, a medical helicopter, and a medical jet. Sodium chloride particles were used to simulate infectious particles, and particle counts were obtained in numerous locations close to the helmet and around the patient compartment. Counts near the helmet were compared to ambient air with and without use of AGPs (non-rebreather mask [NRB], continuous positive airway pressure mask [CPAP], and high-flow nasal cannula [HFNC]).
Results:
Without the helmet fan on, the particle generator alone and with all AGPs produced particle counts inside the helmet significantly higher than ambient particle counts. With the fan on, there was no significant difference in particle counts around the helmet compared to baseline ambient particle counts. Particle counts at the filter exit averaged less than one despite markedly higher particle counts inside the helmet.
Conclusion:
Given the risk to EMS providers by communicable respiratory diseases, development of devices to improve safety while still enabling use of respiratory therapies is of paramount importance. The AerosolVE helmet demonstrated efficacy in creating a negative pressure environment and provided significant filtration of simulated respiratory droplets, thus making the confined space of transport vehicles potentially safer for EMS personnel.
Monoclonal antibody therapeutics to treat coronavirus disease (COVID-19) have been authorized by the US Food and Drug Administration under Emergency Use Authorization (EUA). Many barriers exist when deploying a novel therapeutic during an ongoing pandemic, and it is critical to assess the needs of incorporating monoclonal antibody infusions into pandemic response activities. We examined the monoclonal antibody infusion site process during the COVID-19 pandemic and conducted a descriptive analysis using data from 3 sites at medical centers in the United States supported by the National Disaster Medical System. Monoclonal antibody implementation success factors included engagement with local medical providers, therapy batch preparation, placing the infusion center in proximity to emergency services, and creating procedures resilient to EUA changes. Infusion process challenges included confirming patient severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positivity, strained staff, scheduling, and pharmacy coordination. Infusion sites are effective when integrated into pre-existing pandemic response ecosystems and can be implemented with limited staff and physical resources.
A new specimen of Basilosaurus cetoides was discovered on the banks of the Flint River in Albany, Georgia, USA, in 2010. This fossil, which was the most complete specimen of the species from Georgia to date, consisted of five nearly complete and two partial post-thoracic vertebrae, tentatively identified as S4 through Ca6. During excavation, however, the site was looted and most of the specimen was lost to science. Nonetheless, we use this discovery as an opportunity to update the current state of knowledge on the stratigraphic, biogeographic, and environmental distribution of Basilosaurus in North America, as well as the position of the late Eocene shoreline in the southeastern United States. The results show that Basilosaurus was most abundant across the southeastern coastal plain during the early to middle Priabonian, coincident with the late Eocene maximum marine transgression. The decline in Basilosaurus localities is associated with the retreating shoreline of the terminal Eocene. The majority of Basilosaurus localities fall well south of the position of the late Eocene shoreline hypothesized in this study, suggesting the genus favored middle to outer neritic zones of the epicontinental sea. The comparatively low number of Priabonian specimens in the Atlantic Coastal Plain versus the Gulf Coastal Plain, then, suggests the presence of shallow zones in the Atlantic Coastal Plain that may have limited the distribution of Basilosaurus across the region. The hypothesized shoreline of this study ultimately differs from earlier reconstructions by extending the Mississippi embayment at the Bartonian/Priabonian boundary farther north than previously noted.
The Introduction highlights the opportunities for a healthier and wealthier society following a transition to a low-carbon economy but also notes the serious consequences of inaction. It outlines the aim of the book to help policy-makers with practical guidance and summarises the various sections of the book including: the technologies available, economic projections for a low-carbon Australian economy and comparisons with two emerging giants – Indonesia and India, the sectoral analysis encompassing cities and their precincts, industry and manufacturing, tranportation and regional environments, land use, forestry and agriculture.